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Abstract. Linear panel models and the “event-study plots” that often accompany
them are popular tools for learning about policy effects. We introduce the xtevent
package, which enables the construction of event-study plots following the sugges-
tions in Freyaldenhoven et al. (Forthcoming). The package implements various
procedures to estimate the underlying policy effects, and allows for non-binary
policy variables and estimation adjusting for pre-event trends.
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1 Introduction

In this article, we introduce the xtevent package, which enables the estimation of
linear panel models with dynamic policy effects under various identifying assumptions.
It further enables the construction of the corresponding event-study plots following the
suggestions in Freyaldenhoven et al. (Forthcoming).

We are interested in learning the dynamic effect of a scalar policy zit on some
outcome yit in an observational panel of units i ∈ {1, ..., N} observed in a sequence of
periods t ∈ {1, ..., T}. We consider the following model:

yit = αi + γt + q′itψ +

M∑
m=−G

βmzi,t−m + Cit + εit. (1)

Here, αi denotes a unit fixed effect, γt a time fixed effect, and qit a vector of controls with
conformable coefficients ψ. The scalar Cit denotes a (potentially unobserved) confound
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2 xtevent

that may be correlated with the policy, and the scalar εit represents an unobserved shock
uncorrelated with the policy. The parameters {βm}Mm=−G encapsulate the dynamic
effects of the policy. Specifically, the outcome at time t can be directly affected by the
policy variable’s value at most M ≥ 0 periods before t and at most G ≥ 0 periods after
t.

Typical event-study plots used to visualize the dynamic effects of the policy rely on
the following variation of (1) (see Freyaldenhoven et al. Forthcoming):

yit =

M+LM−1∑
k=−G−LG

δk∆zi,t−k + δM+LM
zi,t−M−LM

+ δ−G−LG−1(1− zi,t+G+LG
)

+αi + γt + q′itψ + Cit + εit,

(2)

where ∆ denotes the first difference operator. In (2), the parameters {δk}k=M+LM

k=−G−LG−1

measure the cumulative effect of the policy at different horizons (Schmidheiny and
Siegloch 2023). The corresponding event-study plot then depicts estimates of the cumu-
lative treatment effects at different horizons k. Thus, the x-axis corresponds to different

values of k, and the y-axis corresponds to estimates of policy effects
{
δ̂k

}k=M+LM

k=−G−LG−1
.

We refer to k as event-time, to the vector δ = (δ−G−LG−1, . . . , δM+LM
)′ as the event-

time path of the outcome, and to its estimated counterpart δ̂ as the estimated event-time
path.

To permit the visualization of overidentifying information, (2) includes the estimated
cumulative effects of the policy at horizons outside of the range of horizons over which
the policy is thought to affect the outcome. For example, it is common to rule out
effects of the policy at time t on the outcome in periods before t (G = 0). By including
LG additional periods in (2), we allow a visualization of pre-event trends (“pre-trends”)
that are generally inconsistent with the model in (1). Similarly, the estimating equation
in (2) permits visualizing the estimated cumulative effect for an additional LM periods
after the cumulative treatment effect is assumed to be constant in (1).

While (2) allows for general (e.g., non-binary) policy variables zit, it is instructive
to consider the particular case of staggered adoption, by which we mean that the policy
is binary, all units begin without the policy; and once a given unit adopts the policy it
is never reversed. Then, ∆zi,t−k is an indicator for whether unit i adopted the policy
exactly k periods before period t, zi,t−M−LM

is an indicator for whether unit i adopted
at leastM+LM periods before period t, and (1−zi,t+G+LG

) is an indicator for whether
unit i will adopt more than G+ LG periods after period t.

Our package complements many other recent contributions to estimation and visu-
alization of panel event studies in Stata, such as eventdd (Clarke and Tapia-Schythe
2021), didmultiplegt (de Chaisemartin et al. 2019), didimputation (Borusyak 2023),
and eventstudyinteract (Sun 2023), as well as the native xthdidregress command
recently introduced in Stata 18. Many of these focus on the case of staggered adoption,
and by default, they require the user to specify a unit-specific treatment period, or to
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represent time relative to treatment. By contrast, our package allows for general policy
variables zit, allowing both estimation and visualization in a wide range of settings.
We stress, though, that there are advantages to implementations designed to ensure
desirable econometric properties in more specialized settings such as the one of stag-
gered adoption, and our package incorporates one such procedure as an option if the
policy indeed follows staggered adoption. Our package also allows for estimation with
pre-event trends using approaches based on trend extrapolation (Dobkin et al. 2018) or
proxy variables (Freyaldenhoven et al. 2019).

In the following section, we briefly discuss several estimation strategies for (2), pro-
vide more details on constructing the corresponding event-study plots, and introduce
some additional features of the xtevent package. Then, in section 3, we give a more
detailed description of the syntax and options for the xtevent package. In section 4,
we illustrate usage of the package in simulated data from Freyaldenhoven et al. (Forth-
coming) and by estimating the effect of a tax reform using data from Mart́ınez (2022).
An appendix includes additional details on the implementation and functionality of the
package.

2 Methods

2.1 Estimation Strategies

In general, identification of the parameters δ will require some form of restriction on
how observable and latent variables relate to the confound Cit and the policy zit. The
appropriate restriction will depend on the economic setting and typically cannot be
learned from the data. In turn, the choice of restriction will determine what type of
estimator is appropriate to estimate δ (see Freyaldenhoven et al. Forthcoming for a more
detailed discussion). The package xtevent includes the following estimators.

Two-way fixed effects estimator. If Cit = 0, equation (2) may be estimated by OLS
using a standard two-way fixed effects estimator. With only one group of fixed effects,
xtevent uses areg for estimation. xtevent further allows for estimation using xtreg

or the reghdfe command (Guimarães and Portugal 2010; Correia 2016, 2019) to allow
for multiple or high-dimensional fixed effects.

Controlling for unit-specific trends. If Cit = λ′if(t), where f(·) is a known low-
dimensional set of basis functions (e.g. f(t) = t ), then (2) may be estimated by
including unit-specific time trends. These can be included in the regression using factor
variables (e.g., i.crosssectionid#c.time) or absorbing them using reghdfe.

Controlling for event-time trends. If Cit can be written as

Cit = α̃i + γ̃t + q′itψ̃ +
∑
m

ϕ′f(m)zi,t−m (3)

for a known set of basis functions f(·) and unknown parameters α̃i, γ̃t and ψ̃, then
equation (2) may be estimated by including the appropriate terms from (3) directly in a
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regression model, or by GMM in a second step following estimation of (2) via two-way
fixed effects.

Intuitively, suppose that a trend in event-time can approximate the confound. In
that case, we can learn about the trend in periods where the policy is inactive and
extrapolate it to later periods. The differences between the outcome variable and the
extrapolated trend are then informative of the policy effects (Dobkin et al. 2018). For
example, consider a staggered adoption setting where the confound follows a linear trend
in time; this trend starts three periods before the policy activates and continues for three
periods afterward. We can represent this situation by taking f(m) = 1 if m ∈ [−3, 3]
and f(m) = 0 otherwise. In this case, we can extrapolate the trend to post-adoption
periods and subtract it to account for the confound.

We allow zit to be continuous, and adoption may not be staggered. If equation (3)
holds, then the estimand of a standard two-way fixed effect estimator of equation (2) is
given by

dk =


ϕ′fk, if k < −G
δk + ϕ′fk, if −G ≤ k ≤M
δM + ϕ′fk, otherwise,

(4)

where fk =
∑k
m=−∞ f(m).

Given estimates of dk, d̂k, we can recover the trend parameters ϕ from the estimates
d̂k in the LG unaffected periods. Let TG ≤ LG be the number of periods prior to G used
to estimate the trend parameters and TM ≤M be the number of “post-event” periods
where the trend is active. We assume fk ̸= 0 for k ∈ [−G− TG, TM ] and 0 otherwise.

We can recover the trend parameters by using the TG moment conditions d̂k−ϕ′fk = 0
for k = −G − TG, . . . ,−G − 1. We can then calculate an adjusted estimated event-
time path δ̂ that accounts for the confound by subtracting ϕ′fk from the unadjusted
coefficients dk for k ∈ [−G− TG, TM ]. Appendix 1 provides further details about this
estimator.

IV estimation with multiple proxies. If multiple additional variables are available
that may serve as proxies for the confound Cit, such that

xit = αxi + γxt + ϕxqit + ΞxCit + uit (5)

with unknown parameters αxi , γ
x
t ,Ξ

x and an unobserved vector uit (which is uncorre-
lated across proxies), then xtevent permits estimating equation (2) by two-stage least
squares, including one of the proxies in (2), and using the other proxy variable as an
excluded instrument.

IV estimation with single proxy. If only a single additional variable is available that
may serve as proxy for the confound Cit, with the error in equation (5) conditionally
mean-independent of the policy, then xtevent permits estimating equation (2) using a
two-stage least squares estimator, instrumenting for the proxy with leads of the policy
variable (Freyaldenhoven et al. 2019).
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In principle, all leads of the policy variable further out than G are potential in-
struments. To select a default choice, xtevent estimates (2) via two-way fixed effects,
with the proxy as the outcome variable. The default excluded instrument for estima-
tion of (2). is then the variable with the largest absolute t-statistic among the leads
{∆zi,t+k}G+LG

k=G+1 and zi,t+G+LG
.

2.2 Event-Study Plots

The auxiliary command xteventplot includes functionality to visualize the event-study
plots based on any of the estimators from the previous section. It further includes the
enhancements to these plots suggested in Freyaldenhoven et al. (Forthcoming).

Normalization. Because the policy variables in (2) are collinear, a normalization is

required to identify the event-time path {δk}k=M+LM

k=−G−LG−1. xtevent normalizes δ−1 = 0
by default. In the case of staggered adoption, this normalization implies that the plotted
coefficients can be interpreted as estimated effects relative to the period before policy
enactment.

Outcome variable level. To ease the interpretation of the estimated policy effects,
xtevent includes a parenthetical label for the normalized coefficient that reflects the
mean of the dependent variable. For instance, in the case of staggered adoption, under
our default normalization, the label corresponds to the sample mean of yit one period
before adoption. More generally, the label corresponds to the value∑

(i,t):∆zi,t−k⋆ ̸=0 yit

|(i, t) : ∆zi,t−k⋆ ̸= 0|

where k⋆ corresponds to the normalized event-time cofficient δk⋆ .

Uniform inference. In addition to standard pointwise confidence intervals for the
coefficients δk, xtevent allows plots of uniform sup-t confidence bands (Freyberger
and Rai 2018; Montiel Olea and Plagborg-Møller 2019). Including these bands allows
for visual tests of hypotheses about the entire coefficient path instead of just single
coefficients.

Overidentification and testing. The estimating equation in (2) includes LG addi-
tional periods before policy adoption to visualize potential pre-trends. Evidence of such
pre-trends is, in practice, often seen as evidence for the presence of a confound that
invalidates the research design. The estimating equation in (2) also includes LM addi-
tional periods after the policy effects end to assess if the dynamic effects have leveled off
after the M postulated periods for which the policy has a direct effect. xtevent dis-
plays the p-values of Wald tests for “pre-trends” (δk = 0 for −G− LG − 1 ≤ k < −G)
and for dynamic effects “leveling-off” (δM = δM+k for 0 < k ≤ LM ). The auxiliary
command xteventtest allows for testing additional hypotheses, such as hypotheses
about cumulative effects, whether effects are constant, and whether the effects follow
linear trends.

Least wiggly path of confounds consistent with the estimates. To help visualize
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whether a confound can plausibly explain all of the event time dynamics of the outcome
variable, xtevent allows for adding a representation of the “most plausible” confound
trajectory consistent with the absence of policy effects. Our choice of “most plausible”
confound is the least “wiggly” polynomial in event-time that passes through the Wald
confidence region of the event-time path. The idea is that if a “smooth” path exists,
this suggests that a confound could plausibly explain the entire event time path of the
outcome, even absent any policy effects. On the other hand, if no “smooth” path exists,
this may indicate that a confound cannot plausibly explain the entire event-time path
of the outcome and, therefore, that the policy does affect the outcome. We describe the
computation of the least wiggly path in detail in Appendix 2.

Overlay plots. xteventplot allows event-study plots with overlays in different es-
timation scenarios. For estimation with event-time trends, xteventplot creates plots
overlaying the trend. For IV estimation with proxies, xteventplot allows overlaying
the dynamics implied by the proxy variable. xteventplot also allows overlays of a
constant-effects model to assess if the policy effects are constant over time.

2.3 Additional features

The package includes the following additional capabilities.

Imputation of missing values in the policy variable. Because equation (1) in-
cludes leads and lags of the policy variable zit and its first difference, the estimation
sample may be smaller than the entire sample available. In general, if the outcome
variable is observed for t ∈

{
t, . . . , t

}
, we need to observe the policy variable zit from

t − G − LG to t +M + LM − 1 to avoid dropping observations from the estimation
sample. In a typical setup, this may imply that we must restrict the estimation window
to calculate the necessary leads and lags of zit. However, the user may have additional
information that allows imputation of the policy variable.

xtevent allows for the following imputation schemes:

1. If the policy variable is declared to follow staggered adoption, xtevent can:

a. Automatically impute any missing values in the policy variable outside the
observed data range, assuming no policy changes outside the sample period.
For example, if we observe zjt = 1, under staggered adoption, this implies
that zjs = 1 for s > t.

b. Automatically impute missing values of the policy variable inside the ob-
served data range. For example, if zjt = 1 and zj,t+2 = 1, under staggered
adoption, this implies that zj,t+1 = 1.

2. Even absent staggered adoption, if the policy variable is declared not to change
values outside the observed sample, xtevent can automatically impute zit outside
the observed sample. For example, if the sample starts at t and z1t = 0 for unit
1, we set zit = 0 for t ∈ {t−G− LG, ..., t− 1}.
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Estimation with repeated cross-sectional data. Some setups involve repeated
cross-sectional data instead of panel data, with treatment varying at a higher level of
aggregation. For example, we may have a series of repeated cross-sections of individuals
for each US state s and a state-level policy zst. In this environment, estimating (2) with
individual fixed effects is unfeasible, but xtevent allows estimation of a related model
with fixed effects by state:

yit =

M+LM−1∑
k=−G−lG

δk∆zs(i),t−k + δM+LM
zs(i),t−M−LM

+ δ−G−LG−1(1− zs(i),t+G+LG
)

+αs(i) + γt + q′itψ + Cs(i)t + εit,

(6)

where the parameters αs(i) are fixed effects corresponding to state s where unit i belongs.

An alternative (Amemiya 1978; Hansen 2007) is to regress yit on a set of state-time
indicators, plus any control variables qit that vary at the individual level, and then
estimate (2) with the estimated state-time effects as dependent variables, and including
state fixed effects, time fixed effects, and controls that vary at the state level. The
auxiliary command get unit time effects facilitates this approach.

Heterogenous treatment effects in staggered adoption settings. The model
in equation (1) assumes that the causal effect of the policy is homogeneous over units i.
Recent literature has highlighted that if treatment effects are heterogeneous by treat-
ment time, then the effects estimated with equation (1) may not be properly-weighted
averages of the cohort-level treatment effects (Athey and Imbens 2022; Callaway and
Sant’Anna 2021; Goodman-Bacon 2021; Sun and Abraham 2021). Sun and Abraham
(2021) propose to estimate event studies for each treated cohort separately, compar-
ing each one to an untreated cohort, and then to average the effects, weighting by
the percentage of treated units in each cohort, to arrive at a treatment effect on the
treated. For the two-way fixed effects case, and under staggered adoption, xtevent
allows for estimation of cohort-by-cohort estimates, in which case it reports an average
weighted by the number of treated observations in each cohort, which is an estimate of
a weighted average treatment effect on the treated under assumptions discussed in Sun
and Abraham (2021).

3 The xtevent Package

The xtevent package includes the commands xtevent for estimation, xteventplot for
visualization, and xteventtest for postestimation hypothesis testing. It also includes
get unit time effects, an auxiliary command to use in combination with xtevent in
repeated cross-section settings. This section describes the syntax and options of each
of these commands.

3.1 The xtevent command

The xtevent command has the following syntax:
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xtevent depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, policyvar(varname)

panelvar(varname) timevar(varname)
[
options

]
Options

policyvar(varname) specifies the policy variable of interest. policyvar() is required.

panelvar(varname) specifies the cross-sectional identifier variable that identifies the
panels. panelvar() is required if the data have not been previously xtset. See
xtset.

timevar(varname) specifies the time variable. timevar() is required if the data have
not been previously xtset. See xtset.

window(numlist) specifies the window around the policy change event to estimate dy-
namic effects. If a single positive integer k > 0 is specified, the estimation will use a
symmetric window of k periods around the event. For example, if k = 2, there will
be five coefficients in the window {−2,−1, 0, 1, 2} and two endpoints {−3+, 3+}. If
two distinct integers, k1 ≤ 0 and k2 ≥ 0, are specified, the estimation will use an
asymmetric window with k1 periods before the event and k2 periods after the event.
For example, with k1 = −1 and k2 = 2, there will be four coefficients in the window
{−1, 0, 1, 2} and two endpoints {−2+, 3+}. window() is required unless static is
specified, or if the estimation window is specified using options pre(), post(),

overidpre() and overidpost() (See below).

pre, post, overidpre and overidpost offer an alternative way to specify the estima-
tion window:

pre is the number of pre-event periods where anticipation effects are allowed. With
window, pre is 0.

post is the number of post-event periods where policy effects are allowed. With
window, post is the number of periods after the event (not including the period
for the event, e.g., event time = 0), except the lastest two periods (assigned to
overidpost for the leveling off test).

overidpre is the number of pre-event periods for an overidentification test of pre-
trends. With window, overidpre is the number of periods before the event.

overidpost is the number of post-event periods for an overidentification test of
effects leveling off. With window, overidpost is 2.

Only one of window or pre, post, overidpre and overidpost can be declared.

norm(integer) specifies the event-time coefficient to be normalized to 0. The default is
to normalize the coefficient on -1.

proxy(varlist) specifies proxy variables for the confound to be included.

proxyiv(string) specifies instruments for the proxy variable for the policy. proxyiv()
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admits three syntaxes to use either leads of the policy variable or additional variables
as instruments. The default is to use leads of the difference of the policy variable as
instruments, selecting the lead with the strongest first stage.

proxyiv(select) selects the lead with the strongest first stage among all possible
leads of the differenced policy variable to be used as an instrument. prox-

yiv(select) is the default for the one proxy, one instrument case, and it is only
available in this case.

proxyiv(# ...) specifies a numlist with the leads of the differenced policy variable
as instruments. For example, proxyiv(1 2) specifies that the two first leads of
the difference of the policy variable will be used as instruments.

proxyiv(varlist) specifies a varlist with the additional variables to be used as in-
struments.

nofe excludes panel fixed effects.

note excludes time fixed effects.

impute(type, [saveimp]) imputes missing values in policyvar and uses this new vari-
able as the actual policyvar. type determines the imputation rule. The suboption
saveimp adds the new variable to the database as policyvar imputed. The following
imputation types are available:

impute(nuchange) imputes missing values in policyvar according to no unobserved
change: it assumes that for each unit: i) in periods before the first observed
value, the policy value is the same as the first observed value and; ii) in periods
after the last observed value, the policy value is the same as the last observed
value.

impute(stag) applies no unobserved change if policyvar satisfies staggered-adoption
assumptions for all units: i) policyvar must be binary, and ii) once policyvar
reaches the adopted-policy state, it never reverts to the unadopted-policy state.
See Freyaldenhoven et al. (Forthcoming) for a detailed explanation of the stag-
gered adoption case.

impute(instag) applies impute(stag) and additionally imputes missing values in-
side the observed data range: a missing value or a group of them will be imputed
only if they are both preceded and followed by the unadopted-policy state or by
the adopted-policy state.

static estimates a static panel data model and does not generate or plot event-time
dummies. static is not allowed with window, pre, post, overidpre, overidpost,
or diffavg.

diffavg calculates the difference in averages between the post-event estimated coeffi-
cients and the pre-event estimated coefficients periods. It also calculates its standard
error with lincom. diffavg is not allowed with static.

trend(#1 [,subopt]) extrapolates a linear trend using the periods from period #1
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before the policy change to one period before the policy change, as in Dobkin et al.
(2018). For example, trend(-3) uses the coefficients on event times -3, -2, and -1
to estimate the trend. The estimated effect of the policy is the deviation from the
extrapolated linear trend. #1 must be less than -1. trend is only available when the
normalized coefficient is -1 and pre = 0. The following can be passed as suboptions:

method(string) sets the method to estimate the linear trend. It can be Ordinary
Least Squares (ols) or Generalized Method of Moments (gmm). (ols) omits the
event-time dummies from trend(#1) to -1 and adds a linear trend ( ttrend) to
the regression. (gmm) uses the GMM to compute the trend for the event-time
dummy coefficients. The default is method(gmm).

saveoverlay saves estimations for the overlay plot produced by xteventplot,

overlay(trend).

savek(stub [,subopt]) saves variables for time-to-event, event-time, trend, and inter-
action variables. Event-time dummies are stored as stub eq m# for the dummy
variable # periods before the policy change, and stub eq p# for the dummy variable
# periods after the policy change. The dummy variable for the policy change time
is stub eq p0. Event time is stored as stub evtime. The trend is stored as stub -
trend. For estimation with the Sun and Abraham (2021) method, such that cohort
and control cohort are active, the interaction variables are stored as stub m# c#
or stub p# c#, where c# indicates the cohort. The following suboptions can be
specified:

noestimate saves variables for event-time dummies, event-time, and trends without
estimating the model. This option is helpful if the users want to customize their
regressions and plots.

saveinteract saves interaction variables if cohort and control cohort are speci-
fied. noestimate and saveinteract cannot be specified simultaneously.

usek(stub) uses previously used event-time dummies saved with prefix stub. This option
can be used to speed up estimation.

reghdfe uses reghdfe for estimation, instead of areg, ivregress and xtivreg.
reghdfe is useful for large datasets. By default, it absorbs the panel fixed effects and
the time fixed effects. For OLS estimation, the reghdfe option requires reghdfe and
ftools to be installed. For IV estimation, it also requires ivreghdfe and ivreg2

to be installed. Standard errors may differ, and singleton clusters may be dropped
using reghdfe. See Correia (2016).

addabsorb(varlist) specifies additional fixed effects to be absorbed when using reghdfe.
By default, xtevent includes time and unit fixed effects. addabsorb requires
reghdfe.

repeatedcs indicates that the dataset in memory is repeated cross-sectional. In this
case, panelvar should indicate the groups at which policyvar changes. For in-
stance, panelvar could indicate states at which policyvar changes, while the ob-
servations in the dataset are individuals in each state. An alternative method to
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estimate the event study in a repeated cross-sectional dataset involves using get -

unit time effects first, and then xtevent. See the description of the get unit -

time effects command below. For fixed-effects estimation, repeatedcs enables
reghdfe.

cohort(varname) specifies the variable that identifies the cohort for each unit. cohort
and control cohort indicate xtevent to estimate the event-time coefficients with
the estimator of Sun and Abraham (2021) for settings with heterogeneous effects by
cohort. cohort requires the Stata module avar.

control cohort(varname) specifies the binary variable that identifies the control co-
hort. cohort and control cohort indicate xtevent to estimate the event-time
coefficients with the estimator of Sun and Abraham (2021) for settings with hetero-
geneous effects by cohort. control cohort requires the Stata module avar.

plot displays a default event study plot with 95% and sup-t confidence intervals. See
Montiel Olea and Plagborg-Møller (2019). Additional options are available with the
postestimation command xteventplot.

additional options: Additional options to be passed to the estimation command. When
proxy is specified, these options are passed to ivregress. When reghdfe is speci-
fied, these options are passed to reghdfe. Otherwise, they are passed to areg or to
regress if nofe is specified. This option is useful for calculating clustered standard
errors or changing regression reporting. Note that two-way clustering is allowed with
reghdfe.

Saved Results

xtevent saves the following in e():
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Scalars
e(lwindow) left endpoint for estimation window
e(rwindow) right endpoint for estimation window

Macros
e(names) names of the variables for the event-time dummies
e(y1) mean of dependent variable et event-time = -1
e(x1) mean of proxy variable at event-time = -1, when only one proxy is

specified
e(trend) “trend” if estimation included extrapolation of a linear trend
e(cmd) estimation command: can be regress, areg, ivregress, xtivreg, or

reghdfe
e(df) degrees of freedom
e(komit) list of lags/leads omitted from regression
e(kmiss) list of lags/leads to omit in the plot
e(method) “ols” or “iv”
e(cmd2) “xtevent”
e(depvar) dependent variable
e(pre) number of periods with anticipation effects
e(post) number of periods with policy effects
e(overidpre) number of periods to test for pre-trends
e(overidpost) number of periods to test for effects leveling off
e(stub) prefix for saved event-time dummy variables

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix
e(delta) coefficient vector of event-time dummies
e(Vdelta) variance-covariance matrix of the event-time dummies coefficients
e(deltax) coefficients for proxy event study to be used in overlay plot
e(deltaxsc) scaled coefficients for proxy event study to be used in overlay plot
e(deltaov) coefficients for event study to be used in overlay plot
e(Vdeltax) variance-covariance matrix of proxy event study coefficients for over-

lay plot
e(Vdeltaov) variance-covariance matrix of event study coefficients for overlay plot
e(mattrendy) matrix with y-axis values of trend for overlay plot, only when

trend(#1) is specified
e(mattrendx) matrix with x-axis values of trend for overlay plot, only when

trend(#1) is specified
e(Sigma ff) variance estimate of the cohort share estimators, only when cohort

and control cohort are specified
e(ff w) each column vector contains estimates of cohort shares underlying

the given relative time, only when cohort and control cohort
are specified

e(V interact) each column vector contains variance estimate of the cohort-specific
effect estimator for the given relative time, only when cohort and
control cohort are specified

e(b interact) each column vector contains estimates of cohort-specific effect for the
given relative time, only when cohort and control cohort are
specified

Functions
e(sample) marks estimation sample

3.2 The xteventplot command

The xteventplot command produces event-study plots after xtevent. The syntax is
the following:
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xteventplot,
[
options

]
Options

suptreps(integer) specifies the number of repetitions to calculate Montiel Olea and
Plagborg-Møller (2019) sup-t confidence intervals for the dynamic effects. The default
is 10000.

overlay(string) creates overlay plots for trend extrapolation, instrumental variables
estimation in the presence of pre-trends, and constant policy effects over time.

overlay(trend) overlays the event-time coefficients for the trajectory of the de-
pendent variable and the extrapolated linear trend. overlay(trend) is only
available after xtevent, trend(, saveoverlay).

overlay(iv) overlays the event-time coefficients trajectory of the dependent variable
and the proxy variable used to infer the trend of the confounder. overlay(iv)

is only available after xtevent, proxy() proxyiv().

overlay(static) overlays the event-time coefficients from the estimated model and
the coefficients implied by a constant policy effect over time. These coefficients
are calculated by (i) estimating a model where the policy affects the outcome
contemporaneously and its effect is constant, (ii) obtaining predicted values of
the outcome variable from this constant effects model and (iii) regressing the
predicted values on event-time dummy variables.

y creates an event-study plot of the dependent variable in instrumental variables esti-
mation. y is only available after xtevent, proxy() proxyiv().

proxy creates an event-study plot of the proxy variable in instrumental variables esti-
mation. proxy is only available after xtevent, proxy() proxyiv().

levels(numlist) customizes the confidence level for the confidence intervals in the
event-study plot. By default, xteventplot draws two confidence intervals: a stan-
dard one and a sup-t confidence interval. levels allows different confidence levels
for standard confidence intervals. For example, levels(90 95) draws both 90%
and 95% level confidence intervals, along with a sup-t confidence interval for Stata’s
default confidence level.

smpath([type, subopt]) displays the “least wiggly“ path through the Wald confidence
region of the event-time coefficients. type determines the line type, which may be
scatter or line. smpath is not allowed with noci.

The following suboptions for smpath control the optimization process. Because of the
nature of the optimization problem, optimization error messages 4 and 5 (missing
derivatives) or 8 (flat regions) may be frequent. Nevertheless, the approximate re-
sults from the optimization should be close to the results that would be obtained with
convergence of the optimization process. Modifying these optimization suboptions
may improve optimization behavior.
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postwindow(scalar > 0) sets the number of post-event coefficient estimates to use
for calculating the smoothest line. The default is to use all the estimates in the
post-event window.

maxiter(integer) sets the maximum number of inner iterations for optimization.
The default is 100.

maxorder(integer) sets the maximum order for the polynomial smoothest line. max-
order must be between 1 and 10. The default is 10.

technique(string) sets the optimization technique for the inner iterations of the
quadratic program. “nr”, “bfgs”, “dfp”, and combinations are allowed. See
maximize. The default is “nr 5 bfgs”.

overidpre changes the tested coefficients in the pre-trends overidentification test. The
default is to test all pre-event coefficients. overidpre(#1) tests if the coefficients
for the earliest #1 periods before the event are equal to 0, including the endpoints.
For example, with a window of 3, overidpre(2) tests that the coefficients for event-
times -4+ (the endpoint) and -3 are jointly equal to 0. #1 must be greater than 0.
See the xteventtest command below.

overidpost changes the coefficients to be tested for the leveling-off overidentification
test. The default is to test that the rightmost coefficient and the previous one are
equal. overidpost(#1) tests if the coefficients for the latest #1 periods after the
event are equal to each other, including the endpoints. For example, with a window
of 3, overidpost(3) tests that the coefficients for event-times 4+ (the endpoint),
3, and 2 are equal to each other. #1 must be greater than 1. See the xteventtest
command below.

The following options control the appearance of the plot:

noci omits the display and calculation of both Wald and sup-t confidence intervals.
noci overrides suptreps if it is specified. noci is not allowed with smpath.

nosupt omits the display and calculation of sup-t confidence intervals. nosupt overrides
suptreps if it is specified.

nozeroline omits the display of the reference line at 0. Note that reference lines with
different styles can be obtained by removing the default line with nozeroline and
adding other lines with yline. See added line options.

nonormlabel suppresses the vertical-axis label for the mean of the dependent variable
at event-time corresponding to the normalized coefficient.

noprepval omits the display of the p-value for a test for pre-trends. By default, this is
a Wald test for all the pre-event coefficients being equal to 0, unless overidpre is
specified.

nopostpval omits the display of the p-value for a test for effects leveling off. By default,
this is a Wald test for the last post-event coefficients being equal unless overidpost
is specified.
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scatterplotopts specifies options to be passed to scatter for the coefficients’ plot.

ciplotopts specifies options to be passed to rcap for the confidence interval’s plot.
These options are disabled if noci is specified.

suptciplotopts specifies options to be passed to rcap for the sup-t confidence interval
plot. These options are disabled if nosupt is specified.

smplotopts specifies options to be passed to line for the smoothest path through the
confidence region plot. These options are only active if smpath is specified.

trendplotopts specifies options to be passed to line for the extrapolated trend overlay
plot. These options are only active if overlay(trend) is specified.

staticovplotopts specifies options to be passed to line for the static effect overlay
plot. These options are only active if overlay(static) is specified.

addplots specifies additional plots to overlay to the event-study plot.

textboxoption specifies options to pass to the textbox of the pre-trend and leveling-off
tests. These options are disabled if noprepval and nopostval are specified. See
textbox options.

additional options: Additional options to be passed to twoway. See twoway.

3.3 The xteventtest command

The xteventtest command performs hypothesis testing after the xtevent command.
The syntax is the following:

xteventtest,
[
options

]
Options

coefs(numlist) specifies a numeric list of event-times to be tested. These are tested to
be equal to 0 jointly, unless otherwise requested in testopts().

cumul requests a test of equality to 0 for the sum of every coefficient for each event-time
in coefs().

allpre tests that all pre-event coefficients are equal to 0. With cumul, it tests that the
sum of all pre-event coefficients equals 0.

allpost tests that all post-event coefficients are equal to 0. With cumul, it tests that
the sum of all post-event coefficients equals 0.

linpretrend requests a specification test to see if the coefficients follow a linear trend
before the event.

trend(#1) tests for a linear trend from time period #1 before the policy change. It
uses xtevent, trend(#1, method(ols)) to estimate the trend. #1 must be less
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than 0.

constanteff tests that all post-event coefficients are equal.

overid tests overidentifying restrictions: a test for pre-trends and a test for effects
leveling-off. The periods to be tested are those used in the xtevent call. See
xtevent.

overidpre(#1) tests the pre-trends overidentifying restriction. It tests that the co-
efficients for the earliest #1 periods before the event are equal to 0, including the
endpoints. For example, with a window of 3, overidpre(2) tests that the coeffi-
cients for event-times -4+ (the endpoint) and -3 are jointly equal to 0. #1 must be
greater than 0.

overidpost(#1) tests the effects leveling off overidentifying restriction. It tests that
the coefficients for the latest #1 periods after the event are equal, including the end-
points. For example, with a window of 3, overidpost(3) tests that the coefficients
for event-times 4+ (the endpoint), 3, and 2 are equal to each other. #1 must be
greater than 1.

testopts(string) specifies options to be passed to test. See test.

Saved Results

xteventtest stores the following in r():

Scalars
r(p) two-sided p-value
r(F) F statistic
r(df) test constraints degrees of freedom
r(df r) residual degrees of freedom
r(dropped i) index of ith constraint dropped
r(chi2) chi-squared
r(drop) 1 if constraints were dropped, 0 otherwise

Macros
r(mtmethod) method of adjustment for multiple testing. This macro is inherited

from test.

Matrices
r(mtest) multiple test results. This matrix is inherited from test.

3.4 The get unit time effects command

The get unit time effects command generates group and time effects in a repeated
cross-sectional dataset. It produces a Stata data file with the variables panelvar,
timevar, and unittimeeffects. The variable unittimeeffects contains the group-time ef-
fects. Hansen (2007) describes a two-step procedure to obtain the coefficient estimates
of covariates that vary at the group level within a repeated cross-sectional framework.
The two-step procedure can be used to obtain the coefficient estimates of an event-study
when the data is repeated cross-sectional. get unit time effects implements the first
part of the two-step procedure. Then, xtevent can be used for the second part of the
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procedure to obtain the event-study coefficient estimates. See xtevent and Appendix
3. The syntax of the get unit time effects command is the following:

get unit time effects depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

panelvar(varname) timevar(varname)
[
options

]
Options

panelvar(varname) specifies the group variable. The policy variable should vary at
this group level.

timevar(varname) specifies the time variable.

saving(filename [, replace]) specifies the name of the Stata data file to store the
unit-time effects estimates. If saving is not specified, the file is saved in the current
directory with the name unit time effects.dta. The suboption replace overwrites
the unit-time effects file.

nooutput omits the regression table.

clear replaces the dataset in memory with the unit-time effects file.

4 Examples

This section provides two examples of xtevent usage. First, we display the basic func-
tionality of the package using simulated data from Freyaldenhoven et al. (Forthcoming).
Then, we show additional options using real data from Mart́ınez (2022).

4.1 Simulated data example

We first use the “Jump at the time of the event” data from Freyaldenhoven et al.
(2022). The data is a balanced panel of 2,000 observations from 50 units observed over
40 periods, where the policy initially affects the units at different periods. Units are
randomly treated in the sample period. The coefficient on the treatment variable is one.

We start by loading the dataset and specifying the unit and time variables.

. use simulation_data_dynamic.dta, clear

. xtset id t

Panel variable: id (strongly balanced)
Time variable: t, 1 to 40

Delta: 1 unit

Below, we show a glimpse of the dataset. The variable id indexes the cross-sectional
units, t indexes time, y is the outcome variable, z is the policy variable, and x is a
control variable.

. list id t z y x if id==2 & t<=10, noobs
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id t z y x

2 1 0 42.02239 -.0102958
2 2 0 42.83109 .1713373
2 3 0 42.82665 -.197851
2 4 1 42.59289 -.5887834
2 5 1 43.3557 -.3722385

2 6 1 42.74355 .355894
2 7 1 42.82405 -2.047098
2 8 1 42.34953 -.3757658
2 9 1 42.14841 -1.976451
2 10 1 41.79388 -1.16444

Notice that the time variable t is calendar time, not event time. xtevent does not
require normalization of the time variable, as the specification in equation (2) allows
discrete or continuous policy variables and single or multiple changes.

Basic functionality

We estimate equation (2) setting M + LM = 5 and G + LG = 5, so we are looking at
the effects of the policy on the outcome five periods before and five periods after policy
adoption. To estimate a basic panel event study with dynamic effects of policy variable
z on y using x as control and plot the results, we write:

. xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///
> plot

No proxy or instruments provided. Implementing OLS estimator

Linear regression, absorbing indicators Number of obs = 2,000
Absorbed variable: id No. of categories = 50

F(52, 1898) = 2.81
Prob > F = 0.0000
R-squared = 0.0980
Adj R-squared = 0.0500
Root MSE = 0.7181

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 .2008833 .1138905 1.76 0.078 -.0224803 .424247
_k_eq_m5 .2935611 .1499538 1.96 0.050 -.0005306 .5876528
_k_eq_m4 .1172962 .1490125 0.79 0.431 -.1749493 .4095416
_k_eq_m3 .0874992 .1472188 0.59 0.552 -.2012285 .3762268
_k_eq_m2 .0415972 .1472521 0.28 0.778 -.2471958 .3303902
_k_eq_p0 .8160009 .1472673 5.54 0.000 .5271782 1.104824
_k_eq_p1 .8400974 .1475249 5.69 0.000 .5507695 1.129425
_k_eq_p2 .5699733 .1497108 3.81 0.000 .2763583 .8635883
_k_eq_p3 .2665183 .1507838 1.77 0.077 -.0292011 .5622377
_k_eq_p4 .0915933 .1547402 0.59 0.554 -.2118855 .3950721
_k_eq_p5 .091785 .1564831 0.59 0.558 -.215112 .398682
_k_eq_p6 .1405872 .1192801 1.18 0.239 -.0933466 .374521

x .0076964 .0302145 0.25 0.799 -.0515607 .0669535
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t

(output omitted )

_cons 41.91144 .1507874 277.95 0.000 41.61572 42.20717

F test of absorbed indicators: F(49, 1898) = 1.082 Prob > F = 0.325

The panelvar and timevar options indicate the cross-sectional and time dimensions
of the dataset. The window option specifies the event-time periods to include. By
specifying the impute(nuchange) option, we ask xtevent to assume that the policy
does not change outside the estimation window and to impute the leads and lags of the
policy variable accordingly. We discuss alternative imputation schemes in Appendix 4.

xtevent automatically creates event-time dummies for event-times -5 to 5, denoted
by k eq m5, k eq m4,..., k eq p5, plus endpoint dummies for event-times ≤ −6 and
≥ 6 ( k eq m6, k eq p6) and includes them as independent variables. The normalized
coefficient for event-time = -1 is omitted. By default, xtevent includes unit and time
fixed effects in the regression, but these can be excluded using the note and nofe

options. In this case, xtevent used areg to estimate the regression, so the unit fixed
effects are not reported. The default output includes conventional standard errors.

Figure 1: Event-study plot

The plot option requests an event-study plot after estimation, shown in figure 1.
The plot can also be obtained by writing xteventplot after the xtevent call. The
default plot shows the values of the estimated coefficients along with pointwise confi-
dence intervals (inner whiskers) and sup-t confidence bands for the entire event-time
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path (outer spikes). By default, xtevent normalizes δ−1 = 0, and the y-axis includes
a parenthetical label indicating the mean of the dependent variable one period be-
fore adoption. At the bottom, the graph includes p-values for a pre-trends test and a
leveling-off test.

With the reghdfe option, the user can ask xtevent to estimate the model using
the community-contributed command reghdfe. The user can also specify additional
variables to be absorbed through the option addabsorb(varlist). To ask xtevent to
estimate with reghdfe and additionally absorb the variable eta r2, we write:

. gen eta_r2=round((eta_r+1)*2)

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) ///
> reghdfe addabsorb(eta_r2) impute(nuchange)

Choosing different windows

We can also specify an asymmetric window. For instance, for an estimation of 4 pre-
event periods, 7 post-event periods, and two endpoints:

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) window(-4 7) ///
> impute(nuchange)

With the notation from equation (2), this estimation corresponds to setting G, the
number of pre-event where anticipated effects can occur, to 0; LG, the number of pre-
event periods to use for visualizing pre-event effects, to 4. Analogously, it sets M the
number of post-event periods for lagged effects, to 7, and LM , the number of periods to
test if effects are leveling off, to 1. This is equivalent to explicitly specifying the values
of G, LG, M , and LM :

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) pre(0) overidpre(4) ///
> post(7) overidpost(1) impute(nuchange)

Linear trend adjustment

The option trend(#1 [, subopt]) allows extrapolation of a linear trend in event-time
from period #1 before the policy change, as in Dobkin et al. (2018). The estimated
effect of the policy is the deviation from the extrapolated linear trend. We estimate
the linear event-time trend using three pre-event periods (−3,−2,−1) and using the
method(gmm) suboption to use a Generalized Method of Moments estimator. We also
save the overlay data for plotting:

. xtevent y x, panelvar(id) timevar(t) policyvar(z) window(5) ///
> impute(nuchange) trend(-3, method(gmm) saveoverlay)

No proxy or instruments provided. Implementing OLS estimator

Linear regression, absorbing indicators Number of obs = 2,000
Absorbed variable: id No. of categories = 50

F(52, 1898) = 2.81
Prob > F = 0.0000
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R-squared = 0.0980
Adj R-squared = 0.0500
Root MSE = 0.7181

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 -.0178682 .3123965 -0.06 0.954 -.6305449 .5948085
_k_eq_m5 .1185599 .1499569 0.79 0.429 -.1755379 .4126576
_k_eq_m4 -.0139547 .2002518 -0.07 0.944 -.4066915 .378782
_k_eq_m3 -1.45e-06 .1496187 -0.00 1.000 -.2934359 .293433
_k_eq_m2 -.0021531 .1281336 -0.02 0.987 -.2534507 .2491444
_k_eq_p0 .8597512 .1953144 4.40 0.000 .4766977 1.242805
_k_eq_p1 .927598 .256436 3.62 0.000 .4246719 1.430524
_k_eq_p2 .7012242 .3242324 2.16 0.031 .065335 1.337113
_k_eq_p3 .4415195 .3940669 1.12 0.263 -.3313303 1.214369
_k_eq_p4 .3103449 .4663886 0.67 0.506 -.6043433 1.225033
_k_eq_p5 .3542868 .5386234 0.66 0.511 -.7020694 1.410643
_k_eq_p6 .4468393 .6017334 0.74 0.458 -.733289 1.626968

x .0076964 .0302145 0.25 0.799 -.0515607 .0669535

t

(output omitted )
_cons 41.91144 .1507874 277.95 0.000 41.61572 42.20717

F test of absorbed indicators: F(49, 1898) = 1.082 Prob > F = 0.325

To visualize the original estimates, the extrapolated trend and the linear-trend-
adjusted estimates, xtevent can produce an overlay plot: We use xteventplot to
produce an overlay plot with the extrapolated trend and an adjusted plot. In both
figures, xtevent excludes the endpoints. We show the overlay and adjusted event-study
plots in figure 2.

(a) Overlay extrapolation line (b) Subtract extrapolated trend

Figure 2: Linear trend adjustment

Pretrends adjustment with proxy variables

xtevent allows estimation when a pre-trend is present using the instrumental vari-
ables estimator of Freyaldenhoven et al. (2019). For this, we need to specify the op-
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tion proxy(varname) to indicate the proxy variable(s) for the confound. As a default,
xtevent regresses the proxy variable on leads of the differenced policy variable and
chooses the lead with the highest absolute t-statistic to use as an instrument for the
proxy variable. Alternatively, the user can specify a specific lead or different variables
to be used as instruments in the proxyiv(string) option. xtevent uses xtivregress
to estimate this model.

. xtevent y, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///
> proxy(x)

Proxy for the confound specified. Implementing FHS estimator

proxyiv=select. Selecting lead order of differenced policy variable to use as inst
> rument.

Lead 4 selected.

The coefficient at -1 is normalized to zero.

For estimation with proxy variables, an additional coefficient needs to be normali
> zed to zero.

The coefficient at -4 was selected to be normalized to zero.

Fixed-effects (within) IV regression Number of obs = 1,800
Group variable: id Number of groups = 50

R-squared: Obs per group:
Within = . min = 36
Between = 0.0557 avg = 36.0
Overall = 0.0335 max = 36

Wald chi2(47) = 5.83e+06
corr(u_i, Xb) = -0.0155 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

x .3772094 .5069244 0.74 0.457 -.6163441 1.370763
_k_eq_m6 .1009198 .1046026 0.96 0.335 -.1040974 .3059371
_k_eq_m5 .2344818 .1356115 1.73 0.084 -.0313119 .5002755
_k_eq_m3 .0187142 .1328999 0.14 0.888 -.2417649 .2791932
_k_eq_m2 .0189579 .13511 0.14 0.888 -.2458528 .2837686
_k_eq_p0 .8122546 .1805533 4.50 0.000 .4583766 1.166133
_k_eq_p1 .9546866 .2887189 3.31 0.001 .3888079 1.520565
_k_eq_p2 .7687619 .3744836 2.05 0.040 .0347875 1.502736
_k_eq_p3 .4715529 .4518123 1.04 0.297 -.413983 1.357089

(output omitted )
32 -.1106802 .1948427 -0.57 0.570 -.492565 .2712045
33 -.0372759 .2005944 -0.19 0.853 -.4304338 .3558819
34 -.0579759 .1700988 -0.34 0.733 -.3913634 .2754116
35 -.1346377 .1744911 -0.77 0.440 -.476634 .2073585
36 .2059306 .1766346 1.17 0.244 -.1402669 .5521281

_cons 41.96931 .1359876 308.63 0.000 41.70278 42.23584

sigma_u .12123774
sigma_e .74115015

rho .02606123 (fraction of variance due to u_i)

F test that all u_i=0: F(49,1703) = 0.88 Prob > F = 0.7137

Instrumented: x
Instruments: _k_eq_m6 _k_eq_m5 _k_eq_m3 _k_eq_m2 _k_eq_p0 _k_eq_p1 _k_eq_p2

_k_eq_p3 _k_eq_p4 _k_eq_p5 _k_eq_p6 2.t 3.t 4.t 5.t 6.t 7.t 8.t
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9.t 10.t 11.t 12.t 13.t 14.t 15.t 16.t 17.t 18.t 19.t 20.t 21.t
22.t 23.t 24.t 25.t 26.t 27.t 28.t 29.t 30.t 31.t 32.t 33.t 34.t
35.t 36.t _fd4__00000M

xteventplot can create several plots to illustrate this estimator. We first use
xteventplot, y to create an unadjusted event-study plot for the outcome. This plot is
shown in Figure 3 panel a). Second, using the option proxy, we illustrate the dynamics
of the proxy by creating an event-study plot for the proxy (shown in Figure 3 panel
b)). Third, using the option overlay(iv), we create a plot that aligns the dynamics
of the proxy and the outcome between the coefficient used as an instrument and the
normalized coefficient (shown in Figure 3 panel c)). Finally, using xteventplot and
no additional options, we create a plot that shows the coefficients of the outcome after
subtracting the rescaled event-study coefficients for the proxy (shown in Figure 3 panel
d)).

. xteventplot, y ytitle("Coefficient") xtitle("Event time")

. xteventplot, proxy ytitle("Coefficient") xtitle("Event time")

. xteventplot, overlay(iv) ytitle("Coefficient") xtitle("Event time")

. xteventplot, ytitle("Coefficient") xtitle("Event time")

(a) Event-study plot for outcome (b) Event-study plot for proxy

(c) Align proxy to outcome (d) Subtract rescaled confound from outcome

Figure 3: Pre-trends adjustment using proxy variables for the confound following
Freyaldenhoven et al. (2019)
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Estimation with heterogenous effects by cohort

xtevent allows estimation in settings with heterogeneous effects that vary by cohort
using Sun and Abraham’s (2021) estimator through the cohort and control cohort

options.

In the cohort option, the user must specify the variable that identifies the cohorts,
and in the control cohort option, the variable that identifies the cohort to use as the
control group. In the following example, we first create the time of treat variable to
identify the cohorts and then create the variable last treat to indicate the control
group, which in this case are the last treated units.

. gen timet=t if z==1
(1,059 missing values generated)

. by id: egen time_of_treat=min(timet)

. gen last_treat=time_of_treat==39

. xtevent y, panelvar(id) timevar(t) policyvar(z) window(5) impute(nuchange) ///
> cohort(time_of_treat) control_cohort(last_treat)

No proxy or instruments provided. Implementing OLS estimator

You have specified cohort and control_cohort options.

Event-time coefficients will be estimated with

the Interaction Weighted Estimator of Sun and Abraham (2021).

Linear regression, absorbing indicators Number of obs = 2,000
Absorbed variable: id No. of categories = 50

F(51, 1899) = 2.86
Prob > F = 0.0000
R-squared = 0.0980
Adj R-squared = 0.0505
Root MSE = 0.7179

y Coefficient Std. err. t P>|t| [95% conf. interval]

_k_eq_m6 .1688391 .1394638 1.21 0.226 -.1046792 .4423573
_k_eq_m5 .3559271 .2014006 1.77 0.077 -.0390626 .7509169
_k_eq_m4 .1412944 .1802456 0.78 0.433 -.2122059 .4947946
_k_eq_m3 .1332897 .1908158 0.70 0.485 -.240941 .5075203
_k_eq_m2 .1268691 .1961503 0.65 0.518 -.2578236 .5115617
_k_eq_p0 .8289953 .1805352 4.59 0.000 .4749271 1.183063
_k_eq_p1 .8549653 .1870247 4.57 0.000 .4881699 1.221761
_k_eq_p2 .6015642 .1858662 3.24 0.001 .2370409 .9660875
_k_eq_p3 .287782 .1883399 1.53 0.127 -.0815929 .6571569
_k_eq_p4 .090265 .185755 0.49 0.627 -.2740402 .4545702
_k_eq_p5 .090156 .2027774 0.44 0.657 -.3075339 .4878459
_k_eq_p6 .2033672 .1394957 1.46 0.145 -.0702136 .4769481

t
2 .0907899 .1439475 0.63 0.528 -.1915219 .3731016

(output omitted )
_cons 41.91053 .1507078 278.09 0.000 41.61496 42.2061

The output is analogous to standard xtevent output. The estimated event-time
path corresponds to the weighted average of event-study estimates comparing each
treatment cohort to the control cohort. xtevent stores the estimates by cohort in
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the matrices e(b interact) and e(V interact).

Least wiggly path of confounds consistent with the estimates

xteventplot allows for estimation and display of the least wiggly path of confound
consistent with the estimates discussed in section 2, through the smpath([type, sub-

opt])) option. The default plot type is line. With the additional suboptions maxorder,
maxiter, and technique, we can control the maximum polynomial order for the con-
found path and the optimization process.

. qui xtevent y x , panelvar(id) timevar(t) policyvar(z) window(5) ///
> impute(nuchange)

. xteventplot, ytitle("Coefficient") xtitle("Event time") ///
> smpath(line, maxorder(9) maxiter(100) technique(nr 10 dfp 10))

Note: Smoothest line drawn for system confidence level = 95%
Wald Critical Value 21.0260698
Order 0
Wald value 99.1427915
Order 1
Wald value 99.1021008
Order 2
Wald value 77.664952
Order 3
Wald value 64.4768055
Order 4
Wald value 50.446398
Order 5
Wald value 26.7712056
Order 6
Wald value 19.9659905

(output omitted )

In this case, the minimum polynomial order required to pass through the confidence
region is of order 6. Figure 4 shows the resulting smoothest path. If all of the dynamics
of the estimated event-time path of the outcome variable were due to this unobserved
confound, the jump at the time of the event implies that the confound would also have
to jump at the time of the event. Such a confound path suggests that the estimated
effects may be due to an effect of the policy and not to a confound.

4.2 Empirical application

Mart́ınez (2022) analyzes the effect of a tax reform in the Swiss canton of Obwalden
in 2006. The reform modified the income tax schedule, reducing the tax rate for high-
income taxpayers. We focus on the reform’s effect on Obwalden’s tax revenue from
wealth taxes, following Figure 9 in Mart́ınez (2022). We use the data from Mart́ınez
(2023).

The data is a balanced panel of 702 observations from 26 cantons from 1990 to 2016.
Only one canton –Obwalden– is treated. We estimate a version of equation (2):
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Figure 4: Least wiggly path through the confidence region

yit =

9∑
k=−5,k ̸=−1

δk∆zi,t−k + δ10zi,t−10 + δ−6(1− zi,t+6) + αi + γt + εit. (7)

Here, the outcome yit is per-capita revenue from wealth taxes in canton i and year
t, normalized to 100 in 2005. The policy variable zit is one for Obwalden in 2006 or
after and zero otherwise. The δ parameters are estimates of the cumulative effect of the
reform at various horizons. We normalize δ−1 = 0. The parameters αi and γt represent
canton and year fixed effects, respectively, and εit is an error term.

We start by loading the dataset, specifying the unit and time variables, and display-
ing some values of the dependent and policy variables around the treatment year:

. use martinez.dta, clear

. xtset cant year

Panel variable: cant (strongly balanced)
Time variable: year, 1990 to 2016

Delta: 1 unit

. list cant year pcrev_weatax policyvar if cant==6 & inrange(year,2003,2009), ///
> ab(19) noo sep(7)

cant year pcrev_weatax policyvar

OW 2003 98.06313 0
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OW 2004 99.06337 0
OW 2005 100 0
OW 2006 92.90456 1
OW 2007 87.39193 1
OW 2008 64.9511 1
OW 2009 73.20993 1

We now estimate equation (7) to capture the dynamic effects of the reform on tax
revenues. To adjust for pretrends, we use a linear trend adjustment based on the five
immediate pre-event periods. The unit and time variables do not need to be specified
because the data was xtset previously. With the option reghdfe, we can estimate this
equation using the reghdfe command of Correia (2016). Using reghdfe enables two-
way clustered standard errors through the vce option. We also specify the imputation
rule stag and add weights.

. xtevent pcrev_weatax [aweight = weight_pcrev_weatax], panelvar(cant) ///
> timevar(year) policyvar(policyvar) window(-5 9) impute(stag) reghdfe ///
> vce(cluster cant) trend(-5, method(ols))

No proxy or instruments provided. Implementing OLS estimator
(MWFE estimator converged in 3 iterations)

HDFE Linear regression Number of obs = 702
Absorbing 2 HDFE groups F( 13, 25) = 98.29
Statistics robust to heteroskedasticity Prob > F = 0.0000

R-squared = 0.8426
Adj R-squared = 0.8265
Within R-sq. = 0.0043

Number of clusters (cant) = 26 Root MSE = 30.0172

(Std. err. adjusted for 26 clusters in cant)

Robust
pcrev_weatax Coefficient std. err. t P>|t| [95% conf. interval]

_k_eq_m6 19.42696 9.159563 2.12 0.044 .5624837 38.29143
_k_eq_p0 -21.213 5.02208 -4.22 0.000 -31.55617 -10.86983
_k_eq_p1 -40.46391 7.878604 -5.14 0.000 -56.6902 -24.23762
_k_eq_p2 -69.30378 11.09302 -6.25 0.000 -92.15027 -46.45728
_k_eq_p3 -65.53987 15.00997 -4.37 0.000 -96.45348 -34.62627
_k_eq_p4 -55.14003 17.70663 -3.11 0.005 -91.60752 -18.67253
_k_eq_p5 -57.77175 21.48921 -2.69 0.013 -102.0296 -13.51388
_k_eq_p6 -51.15706 21.70713 -2.36 0.027 -95.86374 -6.450375
_k_eq_p7 -43.37057 24.54034 -1.77 0.089 -93.91234 7.17121
_k_eq_p8 -54.18095 29.12688 -1.86 0.075 -114.1689 5.806996
_k_eq_p9 -53.77577 29.91591 -1.80 0.084 -115.3887 7.8372

_k_eq_p10 -44.05725 14.69578 -3.00 0.006 -74.32377 -13.79073
_ttrend 2.528577 2.67721 0.94 0.354 -2.985241 8.042394

_cons 123.7051 9.13919 13.54 0.000 104.8826 142.5276

Absorbed degrees of freedom:

Absorbed FE Categories - Redundant = Num. Coefs

cant 26 26 0 *
year 27 0 27

* = FE nested within cluster; treated as redundant for DoF computation
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We use xteventplot to display an event-study plot. xtevent allows for several
options to modify the plot’s appearance. We modify the plot to suppress the sup-t
confidence intervals and the p-values from overidentification tests. We also change the
colors and add axis titles.

. xteventplot, ytitle("Coefficient") xtitle("Event time") ///
> nosupt noprepval nopostpval ///
> scatterplotopts(lcolor(maroon) recast(connected) mcolor(maroon) msymbol(circle))
> ///
> ciplotopts(recast(rarea) fcolor(maroon*0.2)) ///
> graphregion(fcolor(white))

option nosupt has been specified. Sup-t confidence intervals won´t be displayed or
> calculated

option noprepval has been specified. The p-value for a pretrends test won´t be dis
> played

option nopostpval has been specified. The p-value for a test of effects leveling-o
> ff won´t be displayed

Figure 5: Dynamic effect of a Swiss tax reform following Mart́ınez (2022)

Figure 5 indicates that the introduction of the regressive tax reform in Obwalden
decreased its government’s tax revenues (measured per capita and relative to the level
in 2005). The most substantial decrease was 69% and came two years after the reform.
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Hypothesis tests

We can use xteventtest to test for different hypotheses about the event-study coef-
ficients after xtevent. For instance, we repeat the estimation with standard errors
clustered by canton and use the coefs option to test if the coefficients for event times
0, 1, 2, and 3 are equal to zero jointly.

. xteventtest, coefs(0 1 2 3)

( 1) _k_eq_p0 = 0
( 2) _k_eq_p1 = 0
( 3) _k_eq_p2 = 0
( 4) _k_eq_p3 = 0

F( 4, 25) = 22.82
Prob > F = 0.0000

The test indicates that the effects are different from zero. We can also test if the
estimated policy effects are constant across time:

. xteventtest, constanteff

Test for constant post-event coefficients

( 1) _k_eq_p0 - _k_eq_p1 = 0
( 2) _k_eq_p0 - _k_eq_p2 = 0
( 3) _k_eq_p0 - _k_eq_p3 = 0
( 4) _k_eq_p0 - _k_eq_p4 = 0
( 5) _k_eq_p0 - _k_eq_p5 = 0
( 6) _k_eq_p0 - _k_eq_p6 = 0
( 7) _k_eq_p0 - _k_eq_p7 = 0
( 8) _k_eq_p0 - _k_eq_p8 = 0
( 9) _k_eq_p0 - _k_eq_p9 = 0

F( 9, 25) = 73.46
Prob > F = 0.0000

This test suggests that the effects are not constant over time. Last, we conduct an
overidentification test to see if the effects level off. To do this, we ask xteventtest to
use the last two post-event coefficients.

. xteventtest, overidpost(2)

Overidentification test for effects leveling off: 2 last post-event coefficients a
> re equal

( 1) - _k_eq_p8 + _k_eq_p9 = 0

F( 1, 25) = 0.01
Prob > F = 0.9086

This test suggests that the effects level off and that the number of post-event periods
in the model may be sufficient to capture the dynamic effects of the policy.
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Jorge Pérez Pérez is a Research Economist at Banco de México.
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Appendix

1 Details on trend extrapolation

The default method to extrapolate a linear trend uses GMM and is implemented as
follows. Let TG ≤ LG be the number of periods prior to G used to estimate the trend
parameters and TM ≤ M be the number of “post-event” periods where the trend is
active. We assume fk ̸= 0 for k ∈ [−G− TG, TM ] and 0 otherwise. We then have
moments given by

δ̂k − ϕ′fk = 0

for k = −G − TG, ...,−G − 1. Let δ̂TG
be the TG-vector collecting δ̂k. Let HTG

be the
TG × dim (ϕ) matrix whose jth row is f

′

k for k = j − 1−G− TG.

A minimum distance estimator ϕ̂ of ϕ solves

ϕ̂ = argmin
ϕ
ĥ (ϕ)

′
Ŵ ĥ (ϕ)

ĥ (ϕ) = δ̂TG
−HTG

ϕ.

Solving the FOC gives

0 = −H ′
LŴ (δ̂TG

−HLϕ̂)

ϕ̂ = (H ′
TG
ŴHTG

)−1H ′
TG
Ŵ δ̂

Under suitable regularity conditions, we have that

√
n

(
ϕ̂− ϕ0

δ̂TG
− δL0

)
→ N

(
0,

[
ΛTG

ΩTG
Λ′
TG

ΛTG
ΩTG

ΩTG
Λ′
TG

ΩTG

])

where

ΛTG
= (H ′

TG
WHTG

)−1H ′
TG
W

and ΩTG
is the asymptotic variance of δ̂TG

. The feasible efficient weighting matrix is

Ŵ = Ω̂−1
TG
→ Ω−1

TG
, and with W = Ω−1

TG
we have that ΛTG

ΩTG
Λ′
TG

= (H ′
TG

Ω−1
TG
HTG

)−1.

33
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1.1 Estimation and inference on adjusted event-time path

Now let δ̂ be the vector containing the entire estimated event-time path, so dim
(
δ̂
)
=

dim (δ) =M +LM +G+LG+2. Let H be the dim (δ)× dim (ϕ) matrix whose jth row

is f
′

k for k = j − 2−G−LG. Given the estimate ϕ̂ we obtain the plugin estimate δ̂∗ of
the adjusted event-time path by

δ̂∗ = δ̂ −Hϕ̂.

Let Λ =
[
0 ΛTG

0
]
, with 0 conformable matrices of 0s (dim (ϕ) × 1 and dim (ϕ) ×

(dim (δ)− LG), respectively), Λ̂ be its sample analogue, and I be a dim (δ) × dim (δ)

identity matrix. Hence δ̂∗ = δ̂ − Hϕ̂ =
(
I −HΛ̂

)
δ̂ and it follows that (again under

suitable conditions)

√
n
(
δ̂∗ − δ∗0

)
→ N (0,Ω−HΛΩ− ΩΛ′H ′ +HΛΩΛ′H ′)

where

δ∗0,k =


0, k < −G∑k
m=−G βm, −G ≤ k ≤M∑M
m=−G βm, k > M.

Hypothesis testing for pre-trends and dynamics leveling off can now proceed as in the
TWFE case, replacing δ̂ with δ̂∗.

1.2 Covariance of adjusted event-time path and coefficient on con-
trols

For some purposes we may be interested in testing hypotheses jointly on (δ∗0 , ψ0). Since

δ̂∗ = (I −HΛ̂)δ̂, we have

√
n

(
δ̂∗ − δ∗0
ψ̂ − ψ0

)
=

(
I −HΛ̂ 0

0 I

)√
n

(
δ̂ − δ0
ψ̂ − ψ0

)
→
(
I −HΛ 0

0 I

)
N(0, V ),

with 0 conformable matrices of zeros (dim(δ)×dim(ψ) for the upper right and dim(ψ)×
dim(δ) for the lower left) and I conformable identity matrices (dim(δ) for the upper left
and dim (ψ) for the lower right). Finally, let Ωψ denote the dim(ψ)×dim(ψ) asymptotic

variance of ψ̂ and Ωδ,ψ denote the dim(ψ)×dim(δ) asymptotic covariance between δ̂, ψ̂.
We can express

V =

(
Ω Ω′

δ,ψ

Ωδ,ψ Ωψ

)
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and the asymptotic variance of
(
δ̂∗, ψ̂

)
is(

I −HΛ 0
0 I

)(
Ω Ω′

δ,ψ

Ωδ,ψ Ωψ

)(
I − Λ′H ′ 0

0 I

)
=(

(I −HΛ)Ω(I − Λ′H ′) (I −HΛ)Ω′
δ,ψ

Ωδ,ψ(I − Λ′H ′) Ωψ

)
.

2 Details for least wiggly path

2.1 The least wiggly path proposal

We denote the dimension of δ as K ≡ G+M +LG+LM +2. For v, a finite-dimensional
coefficient vector, and k, an integer, define the polynomial term

δ∗k(v) =

dim(v)∑
j=1

vj(
k − s1
s2

)j−1,

where vj denotes the j
th element of coefficient vector v and dim(v) denotes the dimension

of this vector. s1 and s2 denote constants that shift and scale the event time (range
of the polynomial). We set s1 = −G − LG − 1 and s2 = M + LM + G + LG + 2. Let
δ∗(v) collect the elements δ∗k(v) for −G−LG − 1 ≤ k ≤M +LM , so that δ∗(v) reflects
a polynomial path in event time with coefficients v.

xtevent plots the least “wiggly” confound whose path is contained in the Wald
region CR(δ) for the event-time path of the outcome. Specifically, it plots δ∗(v∗),
where

p∗ = min{dim(v) : δ∗(v) ∈ CR(δ)} and (8)

v∗ = argmin
v
{v2p∗ : dim(v) = p∗, δ∗(v) ∈ CR(δ)}. (9)

Intuitively, the Wald confidence region represents the set of event time paths for
which a joint F -test of the observed point estimates is not rejected. Since this region is
an ellipsis, there is no straightforward graphical illustration of this region in an event
plot.

To plot the least wiggly path, we solve a two-part problem. In (8), we find the
smallest order p∗ such that a polynomial of order p∗ is entirely contained in the Wald
region CR(δ). In (9), we then choose the polynomial with the lowest coefficient on the
highest order term of that polynomial.

In practice we normalize the event path, such that δk = 0 for at least one k (e.g.
usually at k = −1). We will use N to denote the set of size |N | that collects all
normalized coefficients, such that δ∗k(v) = 0 for k ∈ N . Throughout, we only consider
the case |N | ∈ {1, 2}, i.e., we allow for at most two normalizations.
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2.2 Implementation

Finding p∗

We start with the problem of finding p∗ in (8). We define Σ as the covariance matrix of δ̂
with added zeros in the rows and columns corresponding to the normalized coefficients.

Since p∗ is generally small, it is feasible to solve (8) iteratively as follows:

Algorithm 1 Finding p∗

p∗ ← 0
feasible ← 0
while feasible = 0 do

p∗ ← p∗ + 1
feasible ← SolutionInWaldRegion(δ̂, p∗, α)

end while

function SolutionInWaldRegion(δ̂, p∗, α)

W ∗ = minv:dim(v)=p∗ [δ
∗(v)− δ̂]′Σ−1[δ∗(v)− δ̂] s.t. δ∗kn(v) = 0 for n ∈ N

▷ Σ−1 denotes the generalized inverse.
return 1(W ∗ ≤ c1−α)

▷ c1−α is the 1− α quantile of a random variable τ ∼ χ2(K − |N |).
end function

Note that p∗ is less thanK = dim(δ) by construction, and thus the loop in Algorithm
1 is (at least theoretically) guaranteed to converge after at most K rounds. To ensure
numerical stability, we restrict p∗ to be less than or equal to ten in our implementation
(with a user option to reduce the upper bound further). If p∗ > 10, we conclude “no
smooth path exists.”

To find W ∗ in practice, we use the first-order conditions of the minimization of the
Wald statistic subject to the constraints on the normalized coefficients.

To do this, we write the least wiggly path polynomial in matrix notation as

δ∗(v) = F
K×p∗

v
p∗×1

, where Fkj =
(
k−s1
s2

)j−1

for k = 1, . . . ,K. The rows of F col-

lect the polynomial terms for a given (shifted) event time k, and the vector v collects
the polynomial coefficients. The problem for finding W ∗ can be rewritten as:

min
v

[
Fv − δ̂

]′
Σ−1

[
Fv − δ̂

]
s.t. δ∗k(v) = 0 for k ∈ N . (10)

From the Lagrangian, the first-order conditions are:

F ′Σ−1Fv = F ′Σ−1δ̂ +
1

2
λA′

norm

Anormv = 0
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Here, Anorm is the matrix with the rows of F corresponding to the normalized
coefficients. Algebra then shows that v(λ) = (F ′Σ−1F )−1[F ′Σ−1δ̂ + 1

2λA
′
norm], and

plugging this back into the second first order condition above yields

λ = −2[Anorm(F ′Σ−1F )−1A′
norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂.

Thus, the solution for v is given by

ṽ = (F ′Σ−1F )−1[
F ′Σ−1δ̂ −A′

norm[Anorm(F ′Σ−1F )−1A′
norm]−1Anorm(F ′Σ−1F )−1F ′Σ−1δ̂

]
.

We can write the solution for v as a matrix product. Let XX ≡[
2F ′Σ−1F A′

norm

Anorm 0
|N |×|N|

]
and Xy ≡

[
2F ′Σ−1δ̂

0
|N |×|N|

]
. Then the solution for v is the vector

with the first K rows of ṽ = (XX)−1Xy.

Finding the optimal path given p∗

Once we have found a solution to (8) using Algorithm 1, the next step is to find the
polynomial with the lowest coefficient on the p∗ term that is still contained in the Wald
region (see equation 9). First note that by construction v2p∗ ̸= 0 (If not, Algorithm
1 would have found a solution at p∗ − 1). v∗ can then be found through a simple
constrained minimization on the vector v (of dimension p∗):

v∗ = argmin
v
v2p∗ (11)

such that [δ∗(v)− δ̂]Σ−1[δ∗(v)− δ̂] ≤ c1−α} (12)

and δ∗k(v) = 0 for k ∈ N , (13)

with Σ and c1−α defined as above.

First, if p∗ ≤ |N |, the constraint in (13) implies that v∗ = 0 and we are done. Next,
if p∗ > |N |, we note that v∗ will always be on the boundary of the Wald region. Thus,
the constraint in (12) will always be binding, and we can substitute both constraints
directly to solve for v∗. In particular, given a set N of normalized coefficients and the
constraint in (12), we can solve for some of the other coefficients. If p∗ > |N | + 1, we
use an unconstrained optimization to solve for the remaining ones after that.

Specifically, partition the matrices Anorm and F into three parts as follows

Anorm = [ Ab
|N |×(p∗−|N|−1)

, A1
|N |×|N|

, A2
|N |×1

]

F = [ Fb
K×(p∗−|N|−1)

, F1
K×|N|

, F2
K×1

],
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with the vector v partioned accordingly into v = [vb; v1; v2]. We will solve for the
coefficients v1 and v2 using the constraints in (13) and (12) respectively, and then solve
for the coefficients vb by unconstrained minimization. To do so, first note that, because
Anorm contains the rows of F associated with the normalized coefficients,

Anormv = Abvb +A1v1 +A2v2 = 0 and thus v1 = A1
−1(−Abvb −A2v2). (14)

It follows that

δ∗(v) = Fv = Fbvb + F1v1 + F2v2 = Fbvb − F1

[
A1

−1(Abvb +A2v2)
]
+ F2v2,

and the constraint in (12) becomes

0 =

(
[(Fb − F1A1

−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1
−1Ab)vb − δ̂]− c1−α

)
+ 2

(
[(Fb − F1A1

−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1
−1A2)

)
v2

+ v′2

(
[(F2 − F1A1

−1A2)]
′Σ−1[(F2 − F1A1

−1A2)]

)
v2.

This is a quadratic expression for (the scalar) v2 in terms of vb and, defining the scalars
d0, d1 and d2 as

d0 =
[
(F2 − F1A1

−1A2)
]′
Σ−1

[
(F2 − F1A1

−1A2)
]
,

d1(vb) = 2

(
[(Fb − F1A1

−1Ab)vb − δ̂]′Σ−1[(F2 − F1A1
−1A2)

)
, and

d2(vb) =

(
[(Fb − F1A1

−1Ab)vb − δ̂]′Σ−1[(Fb − F1A1
−1Ab)vb − δ̂]− c1−α

)
simplifies to d0v

2
2 + d1(vb)v2 + d2(vb) = 0.

Using the quadratic formula, we can then solve for v2 by solving the minimization
problem,

v2(vb) =
−d1(vb)±

√
d1(vb)2 − 4d0d2(vb)

2d0
. (15)

Note that, by definition, v2 = vp∗ .

Further, if p∗ = |N |+1, vb is empty and thus v2 does not depend on vb. (15) results
in two solutions, v+2 and v−1 , corresponding to the sign ambiguity in (15). We choose
the solution v∗2 with the smaller absolute value.

If p∗ > |N |+1, the constrained optimization in (11)-(13) is equivalent to the follow-
ing:

v22 = min
vb

min
{+,−}

(
−d1(vb)±

√
d1(vb)2 − 4d0d2(vb)

2d0

)2

, (16)
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where the inner minimization is over the sign in the quadratic formula.

At this point, we have both v∗2 and v∗b . Recovering v∗1 using (14), we obtain v∗ =
[v∗b , v

∗
1 , v

∗
2 ].

3 Estimation in repeated cross-sectional datasets

xtevent allows estimation with repeated cross-sectional datasets when policyvar varies
at the group level, and panelvar identifies the groups. For instance, panelvar could
indicate states at which policyvar changes, while the observations in the dataset should
be individuals in each state. xtevent allows estimations in these settings directly with
the repeatedcs option. It also allows for using the two step procedure described in
Hansen (2007). To use the latter method, the user should first use the get unit time -

effects command to estimate unit-time effects and then use these estimations as input
for xtevent.

We illustrate the use of get unit time effects. First, we create a variable state

that represents groups where individuals receive the treatment in the same period.
Then, we call get unit time effects. It saves a dta file with the unit-time effects.

. gen state=eventtime

. xtset, clear

. get_unit_time_effects y x, panelvar(state) timevar(t) ///
> saving("effect_file.dta", replace)

(output omitted )
file effect_file.dta saved

Then, we keep one observation per state-time in the repeated cross-sectional data
and merge the dataset with the unit-time effects. Afterwards, we execute xtevent.
Since we use a smaller dataset to estimate the event-study, this method can be faster
than using the repeatedcs option.

. qui bysort state t (z): keep if _n==1

. keep state t z

. qui merge m:1 state t using effect_file.dta, nogen

. xtevent _unittimeeffects, panelvar(state) timevar(t) policyvar(z) window(5)
(output omitted )

4 Policy variable imputation

Panel event study estimation requires assumptions about the behavior of the policy
variable outside the observed time range. In section 4.1, we estimated panel event
studies assuming no unobserved changes in the policy variable outside the estimation
period. This imputation scheme is implemented using the impute(nuchange) option.

xtevent allows for other schemes to impute the policy variable. For example,
xtevent can assume that the policy variable follows staggered adoption, using the
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impute(stag) option. It can also impute missing values of the policy variable inside
the observed date range using the impute(instag) option.

To illustrate these options, we use the simulated data example of section 4 and
show the implied event-time dummies under the different imputation schemes. For the
example, we add some missing values to unit 19. Then, we differentiate the policy
variable. xtevent uses leads and lags of the differentiated policy variable to generate
the event-time dummies, following equation (2).

First, we ask xtevent to generate the event-time dummies without any imputation
and specify the option savek(stub, noestimate) to save them without estimating the
model.

. use simulation_data_dynamic.dta, clear

. qui xtset id t

. qui replace z=. if id==19 & (t==35 | t>=39)

. qui gen z_d=d.z

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///
> window(5) savek(v, noestimate)

The event-time dummies with a “v” prefix and ending in m# or p# correspond to
leads and lags of the differentiated policy variable, as described in section 3. Now, we
display these event-time dummies for unit 19 in some periods.

. list id t z z_d v_eq_m6 -v_eq_m1 if id==19 & t>=29, ///
> separator(4) noobs

id t z z_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3 v_eq_m2 v_eq_m1

19 29 0 0 1 0 0 0 0 0
19 30 0 0 . . 0 0 0 0
19 31 0 0 1 . . 0 0 0
19 32 0 0 0 1 . . 0 0

19 33 0 0 0 0 1 . . 0
19 34 0 0 . . 0 1 . .
19 35 . . . . . 0 1 .
19 36 0 . . . . . 0 1

19 37 1 1 . . . . . 0
19 38 1 0 . . . . . .
19 39 . . . . . . . .
19 40 . . . . . . . .

Notice that the event-time dummies have missing values at the bottom of the ta-
ble because we have not made any assumptions about the policy variable outside the
observed time range. Besides, notice that the event-time dummies have some missing
values inside the observed time range due to the missing value in the policy variable in
period 35. From equation (2), this latter missing value translates into two inner missing
values in the event-time dummies and one missing value in the case of the left endpoint.

To impute the policy variable under staggered adoption, we use the impute(stag)
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option. xtevent verifies that the policy variable follows staggered adoption. If so,
xtevent imputes the policy variable outside the observed time range. Then, it uses
the imputed policy variable to generate the event-time dummies and endpoints. We
add the suboption saveimp to save the imputed policy variable as z imputed. We also
differentiate the new imputed policy variable to see how its leads and lags translate to
new event-time dummies.

. cap drop v*

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///
> window(5) savek(v, noestimate) impute(stag, saveimp)

. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the
differentiated imputed policy variable, some event-time dummies, and the left endpoint
generated using the imputed policy variable. First, the policy variable has been imputed
in the observed time range. Nonetheless, the imputation also assumes that the policy
variable in periods after t = 40 would have the same value as the one in that last
period. This imputation can be seen in the event-time dummies, which now have zeros
corresponding to leads of the differentiated policy variable in periods after 40.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///
> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3

19 29 0 0 0 1 0 0 0
19 30 0 0 0 . . 0 0
19 31 0 0 0 1 . . 0
19 32 0 0 0 0 1 . .

19 33 0 0 0 0 0 1 .
19 34 0 0 0 0 0 0 1
19 35 . . . 0 0 0 0
19 36 0 0 . 0 0 0 0

19 37 1 1 1 0 0 0 0
19 38 1 1 0 0 0 0 0
19 39 . 1 0 0 0 0 0
19 40 . 1 0 0 0 0 0

We now ask xtevent to impute the policy variable using the impute(instag) option.
This imputation scheme lets us impute missing values in the policy variable outside and
inside the observed time range. As described in section 3, the impute(instag) option
implements the impute(stag) option, but it also imputes missing values inside the
observed time range in cases where it is possible to assume some value based on the
policy values in surrounding periods. As in the previous example, we also generate the
differentiated imputed policy variable for comparison.

. cap drop v* z_imputed z_imputed_d

. qui xtevent y x, panelvar(id) timevar(t) policyvar(z) ///
> window(5) savek(v, noestimate) impute(instag, saveimp)
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. qui gen z_imputed_d=d.z_imputed

Below, we compare the original policy variable, the imputed policy variable, the
differentiated imputed policy variable, some event-time dummies, and the left endpoint
generated with the imputed policy variable. First, the imputed policy variable does
not have missing values inside or outside the event-time range. As in the example
using impute(stag), the event-time dummies have zeros corresponding to leads of the
differentiated policy variable in periods greater than 40. Additionally, now the event-
time dummies do not have missing values inside the event-time range.

. list id t z z_imputed z_imputed_d v_eq_m6 -v_eq_m3 if id==19 & t>=29, ///
> separator(4) noobs ab(11)

id t z z_imputed z_imputed_d v_eq_m6 v_eq_m5 v_eq_m4 v_eq_m3

19 29 0 0 0 1 0 0 0
19 30 0 0 0 1 0 0 0
19 31 0 0 0 1 0 0 0
19 32 0 0 0 0 1 0 0

19 33 0 0 0 0 0 1 0
19 34 0 0 0 0 0 0 1
19 35 . 0 0 0 0 0 0
19 36 0 0 0 0 0 0 0

19 37 1 1 1 0 0 0 0
19 38 1 1 0 0 0 0 0
19 39 . 1 0 0 0 0 0
19 40 . 1 0 0 0 0 0
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