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Chapter 1
The Basic Difference in Differences Model

In this first chapter, we will review the basics of the difference in differences model. This review will
serve as a building block for discussion of recent topics. We follow de Chaisemartin and D’Haultfœuille
(2023) and Roth et al. (2023) for this review.

1.1 The simple case

We start with the simple case to introduce notation and assumptions. Units are indexed by i. There are
t = 1,2 periods. In t = 2, treated units receive a treatment, while control units remain untreated in both
periods. We will denote treated units by those for which Di = 1, and control units by Di = 0. We observe
a panel of units i = 1, ...,N for both periods. For each unit, we observe an outcome Yi,t and a treatment
status indicator Di.

Each unit has potential outcomes that would be observed had the unit received treatment or not. For
each period t, each unit has two potential outcomes: Yi,t(0,0) is the potential outcome if the unit is not
treated and Yi,t(0,1) is the potential outcome if the unit is treated. To simplify, we write Yi,t(0) =Yi,t(0,0)
and Yi,t(1) = Yi,t(0,1).

The fundamental problem of causal inference is that we do not observe the potential outcomes. We
only observe the realized outcome Yi,t = DiYi,t(1)+(1−Di)Yi,t(0).

The individual treatment effect is the difference between the potential outcomes in the treated an
untreated states for every individual i. For t = 2:

τi,2 = Yi,2(1)−Yi,2(0) = Yi,2(0,1)−Yi,2(0,0) (1.1)

We do not try to estimate these individual treatment effects because we do not observe individuals
repeatedly. Instead, we try to estimate the average treatment effect on the treated (ATT), that is, the
average treatment effect conditional on belonging to the set of treated units.

τ2 = E [τi,2|Di = 1] = E[Yi,2(1)−Yi,2(0)|Di = 1] (1.2)

We do not observe untreated outcomes Yi,2(0) for the treated group, so the ATT is not identified only
from data. To identify it, we are going to impute the untreated outcomes using the baseline values of the
outcome on the control group, and assuming that in absence of treatment, the untreated outcomes would
evolve in parallel across treated and control units. This is the parallel trends assumption:

Assumption 1.1 (Parallel trends)

E[Yi,2(0)−Yi,1(0)|Di = 1] = E[Yi,2(0)−Yi,1(0)|Di = 0] (1.3)
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Parallel trends can be justified by a fixed-effects model: Yi,t = αi +φt + εi,t with Cov(Di,εi,t) = 0. In
this model, treatment need not be random: it can be correlated with individual characteristics αi that are
constant over time. However, it cannot be correlated with characteristics that change over time εi,t .

We also need a no anticipation assumption: treatment status in t only affects the outcome in t:

Assumption 1.2 (No anticipation) Yi,1(0) = Yi,1(1) for all i with Di = 1

An additional hidden assumption is the stable unit treatment value assumption (SUTVA). This as-
sumption is embedded in how we wrote the outcome equation: Yi,t = DiYi,t(1)+ (1−Di)Yi,t(0). Here,
the outcome for unit i does not depend on the treatment status of other units. This rules out spillover
effects. We do not define it formally since it it embeded in the potential outcomes framework, but list it
as in Cunningham XX

Assumption 1.3 (Stable unit treatment value)

1. A treated unit cannot impact a control unit such that their potential outcomes change
2. Units that are assigned to treatment receive the same treatment value

With these assumptions we are ready to identify τ2. We want to impute the average value of the
potential outcomes for the untreated units E[Yi,2(0)|Di = 1]. By parallel trends:

E[Yi,2(0)|Di = 1] = E[Yi,1(0)|Di = 1]+E[Yi,2(0)−Yi,1(0)|Di = 0]

The second term can be obtained from data because it is a potential outcome: It is the potential out-
come for treated units in time 0 had they not been treated in time 1. However, because of no anticipation,
this equals the observed outcome for treated units in time 0.

E[Yi,1(0)|Di = 1] = E[Yi,1(1)|Di = 1]

Therefore the imputed value of E[Yi,2(0)|Di = 1] is:

E[Yi,2(0)|Di = 1] = E[Yi,1(1)|Di = 1]+E[Yi,2(0)−Yi,1(0)|Di = 0]

which is the baseline value for the treated units plus the change in time of the outcome for control
units. Under these assumptions the ATT is:

τ2 = E[Yi,2(1)−Yi,2(0)|Di = 1] (1.4)
= E[Yi,2(1)|Di = 1]−E[Yi,1(1)|Di = 1]−E[Yi,2(0)−Yi,1(0)|Di = 0]

which is the traditional difference in differences expression.
The imputation of the potential outcomes for the treated group can be easily visualized in a graph:

[Cunningham Mixtape II 1.44]

For estimation, equation (1.4) gives us a natural way of estimating the TT from data, simply replacing
the expectations by their sample analogs. A more practical way is to write (1.4) as a linear model:

Yi,t = αi +φt +1(t = 2)×Di ×β + εi,t (1.5)

and estimate the parameters, via OLS for example. We call this specification the two way fixed effects
(TWFE) specification. The OLS estimate of β , β̂ , is equivalent to τ̂2, an estimate of τ2.

Equation (1.5) also provides a simple way to conduct inference on β̂ . Under a sampling assumption:

Assumption 1.4 (Sampling)
We observe a random sample of N i.i.d draws of (Yi,2,Yi,1,Di)

′ with joint distribution F satisfying
assumptions 1-3.
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Under assumptions 1-4 we have that the estimator β̂ is consistent and asymptotically normal

√
n(β̂ − τ2)→

d
N (0,σ2)

as N → ∞. The variance σ2 can be estimated with standard linear regression methods. We will talk about
usual inference issues in this setup later.

1.2 Triple differences

It is worthwhile to also review the triple-difference estimator here. A nice recent paper (Olsen XXX)
summarizes this estimator.

Suppose there are two states, one of which adopts a policy (T = 1) while the other does not C = 1.
In both states, there are two groups, A and B. Only group B benefits from the policy. A typical double
difference estimator could compare individuals in group B between states T and C, under parallel trends
in the potential outcomes of group B across states. However, if this assumption is unlikely to hold, we can
take advantage of having an untreated group. We can use the untreated group A to measure the difference
in trends in potential outcomes between states T and C. Then, we can adjust the difference-in-differences
estimator that compares group B across states by the difference in trends in potential outcomes across
estates to arrive at an unbiased estimate of the ATT of the policy.

The diff-in-diff across states for group B is:

β
DD,B = E[Y |T,B,Post]−E[Y |T,B,Pre]− (E[Y |C,B,Post]−E[Y |C,B,Pre]) (1.6)

In terms of potential outcomes, this equals

β
DD,B = E[Y (1)|T,B,Post]−E[Y (0)|T,B,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre])

= E[Y (1)|T,B,Post]−E[Y (0)|T,B,Post]+E[Y (0)|T,B,Post]

−E[Y (0)|T,B,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre])

= AT T +E[Y (0)|T,B,Post]−E[Y (0)|T,B,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre])

Under parallel trends the terms after ATT cancel out. Without parallel trends, we can define the analog
diff-in-diff across states for group A:

β
DD,A = E[Y |T,A,Post]−E[Y |T,A,Pre]− (E[Y |C,B,Post]−E[Y |C,B,Pre])

In terms of potential outcomes, this equals

β
DD,A = E[Y (0)|T,A,Post]−E[Y (0)|T,A,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre])

Assuming that the difference in trends for potential outcomes across states is the same across groups:

E[Y (0)|T,B,Post]−E[Y (0)|T,B,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre]) (1.7)
= E[Y (0)|T,A,Post]−E[Y (0)|T,A,Pre]− (E[Y (0)|C,B,Post]−E[Y (0)|C,B,Pre])

Then β DDD = β DD,B −β DD,A = AT T
To estimate β DDD we can use the following fixed-effects specification:
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Ysit =α +β1T +β2B+β3Post (1.8)
+β4T ×B+β5T ×Post +β6B×Post

+β
DDD + εsit

Most of the recommendations regarding inference and the issues that we will point out in the section
for the difference in differences estimator carry over to the triple difference estimator.
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