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Abstract

Multidimensional measures of poverty have become standard as complemen-
tary indicators of poverty in many countries. Multidimensional poverty calcu-
lations typically comprise three indices: the multidimensional headcount, the
average deprivation share among the poor, and the adjusted headcount ratio.
While several decomposition methodologies are available for the last index, less
attention has been paid to decomposing the multidimensional headcount, de-
spite the attention it receives from policy makers. This paper proposes an ap-
plication of existing methodologies that decompose welfare aggregates—based
on counterfactual simulations—to break up the changes of the multidimensional
poverty headcount into the variation attributed to each of its dimensions. This
paper examines the potential issues of using counterfactual simulations in this
framework, proposes approaches to assess these issues in real applications, and
suggests a methodology based on rank preservation within strata, which per-
forms positively in simulations. The methodology is applied in the context of
the recent reduction of multidimensional poverty in Colombia, finding that the
dimensions associated with education and health are the main drivers behind
the poverty decline.

Keywords Multidimensional poverty index, decomposition
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1 Introduction

Calculating multidimensional measures of poverty has become commonplace in many
developing countries, as a way to complement traditional monetary indicators. The
breadth of multidimensional measures, compared to traditional approaches, is viewed
as an advantage by researchers, enabling them to aggregate a large number of welfare-
associated variables into a single measure. Multidimensional measures are also at-
tractive to governments, as they are conducive to a more precise understanding of
the determinants of individual welfare and quality of life, allowing the identification
of those fields where public policy may have a larger impact.

Despite this popularity, multidimensional measures are not free from the criti-
cism faced by other approaches to measuring poverty. As with any indicator that
attempts to summarize a complex phenomenon into a single index, multidimen-
sional poverty measures may be hard to interpret if unaccompanied by additional
information (Ravallion, 2011). In this sense, rather than focusing solely on the mea-
sure that aggregates across dimensions, analyses of multidimensional poverty also
tend to contain separate information about each dimension. This, however, increases
the number of indicators to be tracked, and reduces the usefulness of the summary
measures.

These difficulties become compounded when tracking the evolution of multidi-
mensional measures across time. An exact identification of the contribution of each
dimension to the evolution of multidimensional measures would require tracking
the transition of individuals in and out of poverty, and the dimensions by individ-
ual. This exhaustive analysis would defeat the purpose of aggregation of poverty
measures.

Decomposition approaches, whereby poverty measures are split up into the con-
tribution of broadly defined determinants of interest, are a reasonable compromise
between a comprehensive analysis and a completely aggregated one1. As expressed
in Ferreira and Lugo (2013), these approaches aim for a “middle ground”, which can
be informative of multidimensional poverty as well as expeditious. While these ap-
proaches are deeply rooted in the traditional monetary poverty research, they have
been less developed in the literature of multidimensional measurement. Decompo-

1Decomposition approaches are deeply rooted in monetary poverty research. Examples include
Ravallion and Huppi (1991), Datt and Ravallion (1992), Bourguignon et al. (2005), Kolenikov and
Shorrocks (2005) and Azevedo et al. (2013a)
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sitions of the multidimensional headcount ratio, in particular dynamic ones, appear
to be lacking in attention.

Overlooking the multidimensional headcount ratio is conspicuous, considering
that this indicator is particularly important on its own. Even though the adjusted
headcount ratio has desirable theoretical properties that the headcount ratio lacks
(Alkire and Foster, 2011), the headcount ratio itself has gained prominence in re-
cent poverty analyses. From an academic perspective, focusing on the evolution
of the adjusted headcount ratio as opposed to the multidimensional headcount ra-
tio disregards variations in poverty that come only from changes in the number of
poor and arise only in the identification step. Using datasets form several coun-
tries, Apablaza et al. (2010) and Apablaza and Yalonetzky (2013) show that declines
in the adjusted headcount ratio are mostly due to changes in the multidimensional
headcount and not to changes in intensity. From a policy perspective, the multidi-
mensional headcount is frequently used by governments as ”the rate of multidimen-
sional poverty”—instead of the adjusted headcount ratio—as it is easily communi-
cable and also comparable to the monetary rate of poverty.

In this paper, we propose an approach to decompose variations in the multidi-
mensional headcount ratio into changes attributed to different categories of dimen-
sions. Our approach builds on counterfactual simulation approaches, which have
traditionally been used to decompose poverty and inequality indicators. These ap-
proaches were first proposed by Barros et al. (2006), and then extended in a series of
papers by Azevedo et al. (2012b, 2013a,b). The approach relies, first, on expressing
the indicator of interest as a function of the distribution of its determinants over a
finite population. Then it replaces these distributions by counterfactual ones, where
one of the determinants has been altered.

Our approach allows us to estimate the extent to which an observed change in
a dimension—or category of dimensions—can explain the observed change in the
multidimensional headcount ratio. In the presence of panel data, it allows doing
this without separately tracking the transitions in and out of poverty of each indi-
vidual. In repeated cross-section data—when such tracking is impossible—the ap-
proach constitutes a good approximation of how much each dimension contributes
to the headcount’s change. In both cases, it summarizes separate information on the
headcount by dimension, weights and incidence.

Our paper contributes to the recent literature on decomposition of multidimen-
sional poverty indices. Apablaza and Yalonetzky (2013) propose approaches to de-
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compose multidimensional poverty measures statically or dynamically. They de-
compose the two components of the adjusted headcount ratio, by decomposing the
headcount ratio across groups and the average deprivation share across dimensions.
This is natural since these indicators have additive separability properties that make
them easy to decompose, as opposed to the multidimensional headcount, which is
nonlinear in terms of deprivation scores. Our approach allows use to decompose
changes in the headcount ratio by dimensions.

Roche (2013) implements a Shapley value approach (Shorrocks, 2013) to decom-
pose the adjusted headcount ratio and its components. Garcia-Diaz and Prudencio
(2017) adopts this strategy to decompose a multidimensional chronic poverty in-
dex. As Apablaza and Yalonetzky (2013), they only decompose the average depri-
vation share across dimensions, leaving the question of how different dimensions
contribute to changes in the incidence of poverty. Our simulation-based approach
tackles this issue. By combining our approach to decompose changes in the mul-
tidimensional headcount, and the approach to decompose changes in the average
deprivation share among the poor of Apablaza and Yalonetzky (2013), a decomposi-
tion of changes in the adjusted headcount ratio by dimension could be obtained.

The paper is divided in two parts. In the first part, we describe the problem of
decomposing multidimensional poverty measures and outline our methodology. In
2, we summarize the technical aspects of the multidimensional poverty measure-
ment, and set up the analytical framework for the rest of the paper. We outline the
technical aspects of the counterfactual simulation methodology in section 3.

In the second part, we apply our methodology on datasets of Colombian house-
holds. We use both a panel and repeated cross section datasets, and highlight the
differences and pitfalls of using the decomposition methodology in each case. We
use the panel dataset, –where our decomposition is exact– to illustrate the method-
ology and draw lessons for applying it in more general cases. With the repeated cross
section dataset, we replicate recent measurements of Colombian multidimensional
poverty and highlight the drivers behind its decline, contributing to the literature on
poverty in Colombia.

We start by describing our data and calculating multidimensional poverty mea-
sures for Colombia in section 4. In section 5, we apply our methodology to a panel
dataset and highlight potential issues that may arise when applying the decomposi-
tion methodology to the multidimensional headcount and when using it in repeated
cross sectional data. We conduct different simulations to identify a method based on
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stratification that performs well in several scenarios. Then, in section 6, we apply
the decomposition analysis to repeated cross sectional data in the context of the re-
cent decline of multidimensional poverty in Colombia between 2008 and 2012. The
results show that education and health were the largest drivers behind the poverty
decline. We conclude in section 7.

2 Multidimensional Poverty Measures and Their

Decompositions

This section provides a review of the existing multidimensional poverty measures.
It presents a description of the methodologies used to decompose the measures by
dimensions and over time, outlining the difficulties associated with decomposing
changes in the adjusted headcount ratio by dimension.

2.1 The Multidimensional Poverty Index measures

We follow Alkire and Santos (2010) and Alkire and Foster (2011) in the presentation
of the multidimensional poverty index (MPI), with the distinction that we do not
focus on the identification, censoring and aggregation steps. Additionally, we depart
from the deprivation matrix notation and, instead, describe the index in terms of
random variables in order to ease the transition to our discussion in the next section.

Let i = 1, 2, . . . , n index individuals. Let yi = (yi1, yi2, . . . , yiD) be a vector of
achievements for individual i in dimensions d = 1, 2, . . . , D. Let cd be the deprivation
cut-off of dimension d. An individual i is said to be deprived in dimension d if yid < cd.
Now let w = (w1, w2, . . . , wD) be a vector of weights given to each dimension, such
that wd ≥ 0 and

∑D
d=1wd = 12. Individual i is said to be multidimensionally poor if

pi ≡ 1

(
D∑

d=1

wd1 (yid < cd) > k

)
= 1 (1)

where 1 is the indicator function; and k is called the cross-dimensional cutoff. Simply
put, an individual is multi-dimensionally poor if a weighted sum of deprivation
indicators falls below a pre-specified threshold. The amount

∑
d wd1 (yid < cd) is

called the deprivation share.
2Note that we define the weights as adding up to 1 and not to the number of dimensions.
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From this individual measure of poverty, three population wide measures are
built. The multidimensional headcount ratio is the proportion of the population that
is multi-dimensionally poor. It measures the incidence of multidimensional poverty
over the population:

H ≡ 1

n

n∑
i=1

pi

=
1

n

n∑
i=1

1

(
D∑

d=1

wd1 (yid < cd) > k

)
(2)

Defining p ≡
∑n

i=1 pi, the average deprivation share among the poor is

A ≡ 1

p

n∑
i=1

pi

[
D∑

d=1

wd1 (yid < cd)

]
(3)

which measures the intensity of poverty in the population among the multi-dimensionally
poor. Finally the adjusted headcount ratio is defined as

M0 ≡ HA (4)

which adjusts the headcount by the intensity of poverty.
Alkire and Foster (2011) focus on the M0 measure, due to its desirable properties.

These include monotonicity in the number of deprived dimensions and important
decomposition properties, which we outline in the next section. The headcount ratio
H, however, tends to receive wider attention in policy circles because, as a simple
population proportion, its level is immediately comparable with traditional income-
based poverty rates.

2.2 Decomposing the measures

The three measures outlined provide a one-dimensional summary of the incidence
and intensity of poverty for the population as a whole. In order to examine the
particular determinants of poverty, these measures may be decomposed into specific
indexes designed to see which factors contribute more.

Several decomposition methodologies exist, which can be classified into two broad
categories: static and dynamic. Static methodologies decompose a single observa-
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tion into contributions from cross-sectional determinants, while dynamic ones de-
compose the time-variation of the measure into the contribution of time-varying
components. While the present paper focuses in a particular type of dynamic de-
composition, static methodologies are described briefly next.

Static decompositions may be of two types: group decompositions and dimen-
sional decompositions. Group decompositions are customary in the poverty mea-
surement literature and decompose poverty measures into the contributions of par-
ticular individual groups. As shown in Alkire and Foster (2011), all the measures
considered are decomposable into individual groups. For the headcount ratio, if
there are two population groups, 1 and 2, with populations n1 and n2, the headcount
ratio is:

H =
n1

n
H1 +

n1

n
H2

Where H1and H2 are the headcount ratios for each group.
Dimensional decompositions break up measures into the contribution of each

dimension. From equation (3), it is clear that the A measure is dimensionally decom-
posable, with contributions equal to:

1

p

n∑
i=1

piwd1 (yid < cd) . (5)

Alkire and Foster (2011) also show that the M0 measure is dimensionally decom-
posable. Defining the censored headcount ratio Hd as the proportion of people de-
prived in dimension d among the poor:

Hd =
1

n

n∑
i=1

pi1 (yid < cd) (6)

Then, M0 can be decomposed by dimensions as:

M0 =
D∑

d=1

wdHd (7)

Conversely, the headcount ratio H is not decomposable by dimensions, since, by
construction, H is a nonlinear function of the contribution of each dimension—as
reflected in equation (2).

Dynamic decompositions, on the other hand, focus on splitting up the varia-
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tion of the measures over distinct periods of time into time-variation from its com-
ponents. These components may or may not be further decomposed into cross-
sectional ones.

As shown in Apablaza et al. (2010), from equation (4), a simple dynamic decom-
position of the percent variation in M0, ∆%M0, is:

∆%M0 = ∆%H + ∆%A + ∆%H∆%A (8)

Static and dynamic decompositions can be combined. For instance, in the previ-
ous equation, one could decompose H and A statically in each period, and then split
up the changes in M0 into changes in the cross-sectional components previously ob-
tained. Such decompositions are available, as long as the indicator is decomposable
cross-sectionally. This approach is used by Apablaza et al. (2010), who exploit the
fact that the headcount is decomposable across groups, and that the average depri-
vation share is decomposable across dimensions, to extend this result by decompos-
ing the components of equation (8). They show that the percent variation in H can
be further decomposed into population changes within groups, changes in the head-
count within groups, and a multiplicative effect. Furthermore, the percent variation
in A can be decomposed into the weighted sum of percent variations of each of its
dimensional components.

However, if the indicator is not cross-sectionally decomposable, this approach
fails. This is the case when attempting to decompose the changes of the headcount
ratio H into the variation attributed to each of its dimensions. Due the nonlinearity of
H , an explicit closed-form solution for this decomposition is not feasible. However,
a counterfactual simulation methodology may be used to work around this. That is
the topic of the following section.

3 Methodology

The decomposition approaches described so far are not appropriate to look into the
dimensions responsible for changes in the headcount ratio H over time. In this sec-
tion, we analyze the problem of decomposing changes in H , and describe a coun-
terfactual simulation methodology to address the issue. First, we outline the over-
all problem of decomposing changes in H . Then we summarize the counterfactual
simulation methodology based on Barros et al. (2006), Azevedo et al. (2013a) and
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Azevedo et al. (2013b). The section concludes by addressing the advantages as well
as the potential caveats of applying this method to the headcount ratio H .

Let us assume that there are two observations of the multidimensional head-
count H t, for t = 1, 2; the first, 1, corresponds to the initial observation while 2

corresponds to the final observation. We also observe the two associated datasets
of information on achievements yt

i : y1
i = (y1i1, y

1
i2, . . . , y

1
iD) , i = 1, 2, . . . n1 and

y2
j =

(
y2j1, y

2
j2, . . . , y

2
jD

)
, j = 1, 2, . . . , n2.. Additionally, we observe a set of demo-

graphic variables z1i , z
2
j . In the case of panel data, individuals can be tracked across

time, in which case variables are indexed by the same index, i, at both periods and
n1 = n2 . Otherwise, the datasets refer to repeated cross-sections. The change in the
multidimensional headcount ratio is the difference between the two indicators 3:

∆H = H2 −H1

=
1

n2

n2∑
j=1

1

(
D∑

d=1

wd1
(
y2jd < cd

)
> k

)

− 1

n1

n1∑
i=1

1

(
D∑

d=1

wd1
(
y1id < cd

)
> k

)
(9)

The goal of decomposing the changes into the different dimensions is to be able
to express the change in the headcount ratio as a sum of the changes attributed to
each dimension Sd :

∆H =
D∑

d=1

Sd (10)

Several remarks are in order. Notice, first, that ∆H is not decomposable by di-
mensions. It is not decomposable in terms of the censored headcount ratios defined
in section 2.2. Second, it is a nonlinear function of the contributions of each dimen-
sion to the average deprivation share, due to the nonlinearity of the indicator func-
tions that involve yid in equation (2): i.e., only the individuals below the dimension

3In the case of panel data, this simplifies to

∆H =
1

n

n∑
i=1

 1

(∑D
d=1 wd1

(
y2id < zd

)
< k

)
−1
(∑D

d=1 wd1
(
y1id < zd

)
< k

) 
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specific cut-off contribute to the headcount. Third, while it is clear that the weights
play a role in the determination of the contribution of each dimension to the head-
count, they remain constant across time and are not the drivers of the changes in
H .

Note that by combining a decomposition of ∆H and the decomposition of ∆A

that arises from equation (3), a dimensional decomposition of ∆%M0 can be achieved.
As Apablaza and Yalonetzky (2013) show, ∆%A can be decomposed as:

∆A = A2 − A1 =
D∑

d=1

∆

[
n∑

i=1

pi
p
wd1 (yid < cd)

]
=

D∑
d=1

SA (11)

Combining this equation with equations (8) and (10) yields:

∆%M0 = ∆%H + ∆%A + ∆%H∆%A

=
D∑

d=1

Sd

H
+

D∑
d=1

SA

A
+ ∆%H∆%A (12)

This decomposition breaks changes in the adjusted headcount ratio into changes
in the number of poor attributed to each dimension, Sd, changes in the intensity
of multidimensional poverty attributed to each dimension, SA, and an interaction
effect. The logic behind larger contributions of dimensions in explaining the changes
in intensity is very clear: if the majority of poor are no longer deprived in a particular
dimension, this dimension will contribute more to the decrease in intensity.

In the case of panel data, larger contributions of a dimension to changes in H

are also intuitive. As an illustrative example, consider a case where the change in
the headcount ratio occurs over a short period of time so that the demographic vari-
ables z remain constant. Assume that many dimensions change, but each individual
only experiences changes in one dimension. If all individuals whose deprivation
share crossed the multidimensional cut-off experienced change in the same dimen-
sion, then this dimension would be the unique contributor to the change. Indeed,
Apablaza and Yalonetzky (2013) show that the change in the headcount in the case
of panel data can be decomposed into a weighted difference in the transition proba-
bilities of moving in and out poverty. Individuals at the margin of transition may be
more prone to changes in particular dimensions, which would influence the transi-
tion probabilities and would contribute more to the variation in the headcount.
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In the case of repeated cross-section data, changes in the headcount biased to-
wards a particular dimension may arise due to the inclusion of people with different
deprivation profiles in the sample, at one of the points of time. Thus, changes would
be biased by the inclusion of larger shares of people deprived in one dimension. In
applied work, dimensions do not change one at a time for each individual; dimen-
sions may be correlated; and cross-sectional data is the rule and not the exception,
especially in the surveys used to measure poverty in developing countries. A gen-
eral framework to decompose changes in H should thus take into account the notion
that dimensions are jointly distributed, that certain demographic profiles are more
likely to experience changes in particular dimensions, and that only individuals with
similar demographic profiles should be compared. This is the topic of the following
section.

3.1 The decomposition methodology

We propose the use of a counterfactual simulation methodology, first suggested
by Barros et al. (2006), to decompose changes in H additively across dimensions.
This section describes the methodology, following closely Barros et al. (2006), and
Azevedo et al. (2012b, 2013a,b).

From equation (2), H can be written as function4 of the joint distribution of the
vector of achievements y, the weights w and the cut-offs z across the population:
H = Φ (Fy,w,z). However, since the weights and the cut-offs do not change across
individuals, H can be considered a function only of the deprivation score by dimension,
defined as:

xd = wd1 (yid < cd) (13)

With x = (x1, . . . , xD), H can be written as

H = Φ (Fx) = Φ
(
F(x1,...,xD)

)
(14)

Barros et al. (2006) show that, in finite populations, bivariate joint distributions
can be characterized by three functions: the two marginal distributions of each vari-
able, and a function that describes their association. If we define the ranking of in-
dividual ı̃ according to the random variable xd as the position of the individual in a list

4Notice that Φ need not be invertible.
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sorted by the value of random variable

Ryd (i) = # (i ∈ {1, . . . , n} : xid ≤ xı̃}) (15)

Then, according to Barros et al. (2006), for the two variables xd′ and xd′′ , their joint
distribution is completely characterized by

Fxd′ ,xd′′
=
(
Fxd′

, Fxd′′
, Rxd′′

(
R−1

xd′

))
(16)

Where Rxd′′

(
R−1

xd′

)
is the ranking according to xd′′ of a observation with of rank

Rxd′
according to xd′ . The function characterizes the rank dependence between the

two variables5. We call this function the association between xd′ and xd′′ and denote
it as C (xd′ , xd′′). In the multivariate case, the joint distribution can be characterized
by all the marginals, along with either all the pairwise associations between the vari-
ables, or simply with the association of each variable to a reference variable r, from
which the pairwise associations can be obtained. The reference variable may either
be one of the deprivation scores by dimension or a demographic variable:

Fx = (Fx1 , Fx2 , . . . , FxD , C (x1, r) , C (x2, r) , . . . , C (xD, r)) (17)

With this representation in hand, Barros et al. (2006) show that decomposing
changes in a welfare aggregate into two components can be achieved by sequen-
tially changing the marginals and the association in the joint distribution. In the case
of H , the random variables considered are the deprivation scores by dimension, and
the change in equation (9) can be rewritten, using equations (14) and (17), as:

∆H = H2
(
Fx2

1
, Fx2

2
, . . . , Fx2

D
, C
(
x2
1, r

2
)
, C
(
x2
2, r

2
)
, . . . , C

(
x2
D, r

2
))

−H1
(
Fx1

1
, Fx1

2
, . . . , Fx1

D
, C
(
x1
1, r

1
)
, C
(
x1
2, r

1
)
, . . . , C

(
x2
D, r

1
))

(18)

A Barros et al. (2006) decomposition for ∆H in the case of two dimensions, D = 2,
would then be:

5In practice, there can be ties in these rankings. This is inconsequential since, as Barros et al. (2006)
notes, this can be solved by randomizing the ranking for the tied cases.
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∆H = S1 + S2 + S12

S1 = H
(
Fx2

1
, Fx2

2
, C
(
x2
1, x

2
2

))
−H

(
Fx1

1
, Fx2

2
, C
(
x2
1, x

2
2

))
= H2 −H

(
Fx1

1
, Fx2

2
, C
(
x2
1, x

2
2

))
S2 = H

(
Fx1

1
, Fx2

2
, C
(
x2
1, x

2
2

))
−H

(
Fx1

1
, Fx1

2
, C
(
x2
1, x

2
2

))
S12 = H

(
Fx1

1
, Fx1

2
, C
(
x2
1, x

2
2

))
−H

(
Fx1

1
, Fx1

2
, C
(
x1
1, x

1
2

))
= H

(
Fx1

1
, Fx1

2
, C
(
x2
1, x

2
2

))
−H1

(19)

Where H
(
Fx1

1
, Fx2

2
, C (x2

1, x
2
2)
)

is the counterfactual headcount that would be ob-
served if x1 were distributed as in period 1, but x2 and the association remained as
observed in period 2. It is important to note that counterfactuals are purely exercises
to examine changes that occur ceteris paribus, and do not intend to reflect equilibrium
outcomes (Azevedo et al., 2012a). To compute this counterfactual, we can calculate
H from the distribution of (x̂1

1, x
2
2), where

x̂1 = F−1
x1
1

(
Fx2

1
(x1)

)
(20)

Other counterfactuals may be obtained accordingly, requiring inversion of the
distribution functions at each step. From here on, we refer to this method as the
Barros decomposition.

Azevedo et al. (2012b, 2013a,b) have proposed several improvements to the Bar-
ros decomposition to have a broader applicability. Their applications focus mainly
on the decomposition of poverty and inequality indicators, but the same improve-
ments could be applied to other measures.

For both panel data and repeated cross-section applications, these studies con-
sider the multivariate case rather than the Barros bivariate one. They propose to
keep the associations C constant and they add each variable sequentially, such that
no effect is attributed to the interactions. In terms of equation (19), this allows de-
composing ∆H into just two components S1 and S2 , as stated in the original prob-
lem in equation (10). Barros et al. (2006) show that the counterfactuals need to be
changed in the multivariate case in order to hold the associations constant. This
occurs because the counterfactual x̂1 may have a different ranking that the actual
variable in the second period, x2

d. To restore the constant association, they build a
different counterfactual x̃d that reorders x̂1 from equation (20) using the ranking of
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x2
d:

x̃1
id = x1

i∗d

i∗ = C (x̂d, xd (i)) = R−1
x̂d

(
Rx2

d
(i)
)

(21)

Additionally, these studies note that the Barros decomposition is path dependent:
the order in which the variables are replaced by their counterfactuals shifts the result
of the decomposition. This is addressed by using a Shapley value decomposition
approach based on Shorrocks (2013) (for details see Azevedo et al. (2012b)). Basically,
the authors compute the decomposition along each permutation of the y vector and
calculate the average of all the contributions obtained6.

So far we have described the counterfactual simulation methodology, outlining
how it can be applied to a decomposition of the multidimensional headcount. We
have also reviewed . We now move to applying the decomposition to multidimen-
sional poverty in Colombia. Along the process, we highlight several issues that can
arise when the methodology is used in applied work. We describe the data and
calculate the multidimensional poverty measures –whose change we would like to
decompose– in the next section.

4 Multidimensional poverty in Colombia

This section describes the datasets used in the analysis, calculates multidimensional
poverty measures and briefly analyses their trends. We use both a panel dataset and
a repeated cross section dataset of Colombian households.

The Colombian case is interesting for a couple of reasons. Being a middle-income
developing country, a large share of Colombians is still deprived in the dimensions
considered for cross country calculations of MPI measures. On the other hand, the
pace of decline has varied over the years. Monetary and multidimensional poverty
declined sharply from 2003 to 2008; while over the last five years, the decline has
been less sizable though steady.

The panel dataset provides a useful testing ground for calculating decomposi-
tions in an environment where we can track individuals over time. The cross sec-

6This has the disadvantage of making the method dependent on whether the variables are added
together. See Azevedo et al. (2012a) for details.
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tional dataset allows us to replicate official poverty measures closely, and analyse
the drivers behind the decline in Colombian multidimensional poverty.

4.1 Data description

We use two datasets of Colombian Households. The first is the Colombian Longitu-
dinal Survey (Encuesta Longitudinal Colombiana - ELCA), a panel dataset of 10,800
households. About two thirds of the households are rural, and urban households are
selected to be low-income. The survey is useful to provide a picture of household’s
vulnerability to economic shocks. We use the 2010 and 2013 waves, and restrict our
analysis to households that can be tracked on both waves.7. This leaves a total of
8686 households.

The second dataset is the Colombian Quality of Life Survey for the years 2008,
2010 and 2012 (Encuesta de Calidad de Vida - ECV). This is the survey that the Na-
tional Administrative Department of Statistics (Departamento Administrativo Nacional
de Estadı́stica, DANE) uses for multidimensional poverty calculations. The survey in-
cluded around 50,000 households in 2008; while the sample size increased by about
5 percent and 38 percent in the next two rounds, respectively. Unlike the ELCA,
the ECV does not oversample rural households and is representative at the national
level.

4.2 Multidimensional poverty indices

We calculate multidimensional poverty indices using both datasets to set the stage
for our decomposition methods. We start with the ECV dataset, where we replicate
the official poverty measures published by DANE closely. We follow Angulo (2010)
to construct the index.

The multidimensional poverty index for Colombia includes 15 dimensions grouped
into five broad categories: education, childhood and youth, labor, health and stan-
dard of living8. Each of the categories has a weight of 0.2, which is distributed evenly
across the dimensions within each category. Table 1 shows all the dimensions of
the index. Many dimensions are household-based: if the household is deprived in

7For households that split, we keep the primary household
8This index is broader that the calculations of Alkire and Santos (2010) for Colombia. Their selec-

tion criteria are detailed in Angulo (2010).
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any of the dimensions, all household members are considered deprived. The cross-
dimensional cut-off k is 1/3; that is households are considered multi-dimensionally
poor if the weighted sum of deprivation scores is larger than 1/3. For example, a
household deprived in all the dimensions within two categories receives a score of
0.4, and is considered poor. We use the categories to group the 15 dimensions.

For ELCA, we calculate a restricted index using 12 out of the 15 dimensions, due
to lack of data on child labour, child care and long-term unemployment. We also re-
strict our childhood related variables to children under 9 years of age, because older
children do not fill the childhood related module. When dimensions are missing, we
redistribute the weights to remaining dimensions in the same category.

Panels A1 and B1 of figure 1 show the evolution of monetary and multidimen-
sional poverty measures, along with the measures described in section 2.1, for the
years considered. Panel A1 shows official poverty calculations from DANE, which
we replicate using ECV data. Monetary and multidimensional poverty headcounts
have been declining over time, almost at the same pace. By 2012, around 27 percent
of the Colombian population was estimated to be multi-dimensionally poor, while
32.7 percent is considered poor by the monetary measure. Although the headcount
ratio has fallen, the average deprivation share among the poor has remained almost
constant. This implies that the adjusted headcount ratio, which adjusts for the inten-
sity of poverty, has not declined as quickly as the headcount.

Panel B1 shows the evolution of these measures as calculated from ELCA data.
The focus of ELCA on rural households, the restriction to households that can be
linked across waves, and the restrictions placed on the index, result on a higher
multidimensional headcount ratio of 47.9 % by 2013. The average deprivation share
among the poor also remains relatively constant in this dataset.

Panels A2 and B2 decompose the decrease in the adjusted headcount ratio into
the contributions of changes in the multidimensional headcount –due to changes in
the number of poor– and changes in the average deprivation share among the poor –
due to changes in the intensity of poverty–. For all time periods and across datasets,
changes in intensity account for less than a quarter of the change in the adjusted
headcount ratio, while most of the decrease is attributed to changes in the head-
count. This is consistent with Apablaza et al. (2010) and Apablaza and Yalonetzky
(2013), who find this pattern for different countries and datasets. The large contribu-
tion of the change headcount to the overall change in the adjusted headcount ratio,
highlights the importance of analyzing its determinants separately.
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Table 2 shows the evolution of censored headcounts by dimension Hd, that is, the
headcounts of those deprived in at least one dimension within each category, and the
average number of deprivations in each category. This table shows the percentage of
the population deprived in an specific dimension within those that are multidimen-
sional poor, as opposed to uncensored headcounts, which are shown in table A.1.
Since deprivations are calculated at the household level, the numbers in table 2 are
higher that national aggregates at the individual level.

Almost all poor individuals have low educational attainment and are not em-
ployed in the formal sector. The average poor individual is deprived in both ed-
ucation dimensions, but usually only in one dimension of standard of living. The
average number of deprivations within each category declines slightly over time for
the poor in most categories. The sharpest decline in the percentage of people with
at least one deprivation occurs in the health category, where this headcount falls by
about 10 percentage points from 2008 to 2012.

In Table 3, we examine the percentage evolution of the censored headcounts
by dimension over time. The sharpest declines occur in deprivation in access to
childcare services and on the number of households living in homes built with low-
quality materials. Although most headcounts declined between 2008 and 2012, many
of them underwent a sharp decline from 2008 to 2010, followed by a rebound in the
next two year; for example, lack of access to health services loses more than half
of its initial decrease. Furthermore, long-term unemployment headcounts do not
decrease but rather experience a steep increase over the period. The trends in the
uncensored headcounts, shown in table A.1, are similar to the censored ones, but the
U-shaped patterns in some dimensions are not as stark since the number of multi-
dimensionally poor declines over time. Together, tables 2, 3 and A.1 show that the
largest movers are in the categories of health, standard of living, and childhood and
youth, although we cannot conclude that these are the biggest contributors to the
change in the multidimensional headcount.

Table 4 examines the contribution of each category to the intensity of poverty. It
decomposes the average deprivation share as in equation (5), grouping dimensions
over categories. The largest contributors to the intensity of poverty are the education
and labor categories. The contributions of each category are stable over time.

After analyzing the overall patterns in these poverty measures, we apply our
methodology to find which dimensions drive the overall reduction in the multidi-
mensional poverty headcount in Colombia. We start by applying the decomposition
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to the ELCA dataset, where we can track the same individuals over time, in the next
section.

5 Decomposing H in panel data

In this section we decompose the reduction in poverty from 2010 to 2013 using the
ELCA dataset. We take advantage of the panel structure of the data to illustrate
the decomposition and highlight issues when applying the decomposition to the
multidimensional poverty headcount H .

5.1 Decomposition by dimension categories

We apply the decomposition outlined in equation (19) by calculating counterfactuals
tracking the same individuals over time. The counterfactual variables x̃1, are just the
values of the variables in the first period, x1

i .
Since the multidimensional headcount H often depends on a large number of di-

mensions, the Azevedo et al. (2013b) decomposition (ASN hereafter) is much better
suited than the Barros one to decompose it, as it abstracts from calculating the effects
of pairwise calculations, which can be quite large. Moreover, as noted by Azevedo et
al. (2013b), due to the path dependence of the Barros decomposition, not all pairwise
combinations would be calculated, only those of the variables that are consecutive
in the path chosen.

Using the ASN decomposition comes, however, at the cost of assuming that
the effects of changes in the interaction across dimensions is small, such that the
association between different dimensions remains constant over time. Thus, the
ASN methodology disregards changes in the poverty headcount that may arise from
changes in the bivariate association of dimensions, even though their univariate dis-
tributions are held constant in the counterfactuals. Disregarding changes in the inter-
action across dimensions may not be reasonable when their relationship may change
over time.

We therefore apply the methodology by grouping dimensions into broad cate-
gories, and validating our categories such that the interaction between deprivation
scores across categories is low and stable over time. This is done without loss of
generality, by simply partitioning the dimensions into disjoint categories. Formally,
let us assume that we partition the dimensions into two categories: {1, 2, . . . , d1} and
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{d1, d1 + 1. . . . , D}. We can then redefine the deprivation scores by the dimension of
equation (13) as deprivation scores by category:

x̄1 ≡
dB∑
d=1

xd

x̄2 ≡
D∑

d=dA+1

xd (22)

And carry out the decomposition over x̄1 and x̄2.
The fact that the ASN methodology may be generalized to categories of dimen-

sions, should by no means be interpreted as stating that building categories is cost-
less. As Azevedo et al. (2012b) note, the ASN methodology is sensitive to aggregat-
ing the dimensions into categories, and results may vary depending on the aggrega-
tion.

A proper definition of categories should ensure that the interaction across cat-
egories is small and constant over time. We use descriptive statistics to assess this.
We calculate the Kendall rank correlation coefficients of the deprivation scores across
categories for the two years in the sample, as illustrated in table 5. We choose Kendall
correlation coefficients since we are concerned about changes in the ordinal associa-
tion between the deprivation scores across categories. The results are encouraging:
the correlation coefficients across categories are small and stable.

5.2 Results in panel data

Table 6 shows the results of the decomposition exercise for the decline in the multi-
dimensional headcount ratio between 2010 and 2013 in the ELCA dataset. All cal-
culations are done with the software provided in Azevedo et al. (2012a). For these
households, improvements in standards of living account for more than half of the
reduction in the headcount ratio. The dimensions in the education and childhood
and youth categories account for most of the remainder of the decrease. The dimen-
sions in the health category actually contribute to a 13 % increase in the headcount
ratio, which is offset by the improvements in other categories.

We emphasize the usefulness of the decomposition by comparing it to tracking
censored headcounts and incidence separately in tables 2 and 3. Although these
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tables show that dimensions in the standard of living category play a large role in
the reduction of the headcount, because of the large incidence of deprivation in this
category andb its large declines, it would be harder to conclude that the education
and childhoood and youth categories play such a large role, or that the worsening of
access to health services increased the overall headcount ratio. The decomposition
provides a succinct measure of these contributions and complements these analyses.

The ELCA decomposition is limited to the 2010-2013 period, and focuses only on
a subset of households, which are mostly rural. To provide a wider picture of the
drivers of the decline in multidimensional poverty for Colombia as a whole, we turn
to decomposing the decline in poverty in the ECV data in the next section.

6 Decomposing H in cross sectional data

In this section, we apply the proposed methodology to decompose the recent decline
in the multidimensional headcount ratio in Colombia, replicating official measures
using the ECV dataset. We start by highlighting issues that arise when applying the
decomposition on repeated cross sectional data. We propose solutions to these issues
and assess their performance using simulations with the panel dataset from the pre-
vious section. At the end of the section, we present the results of the decomposition
using a stratification based method that performs well in simulations. We find that
health and education are the major drivers of the decline in the multidimensional
headcount from 2008 to 2012.

6.1 Reference variables to build counterfactuals

The first issue faced when applying the decomposition to repeated cross sections is
the construction of counterfactual distributions. As shown in the previous section,
this is straightforward in panel data. The counterfactuals are obtained by setting the
counterfactual deprivation scores by category, x̃1

i , to their value in the first period for
the same household, x1

i .
In repeated cross-section data, however, the counterfactuals can only be obtained

using equation (20) if F is strictly monotone in the bivariate case, or if R is strictly
monotone in the multivariate case. This is rarely the case for our application. Given
that the achievement variables yd are indicator variables, the deprivation scores by
dimension xd have discrete distributions. This implies that their distribution func-
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tions are not invertible, so that the Barros decomposition may not be calculated. The
issue does not come up when using panel data as, in such case, the counterfactu-
als are simply built by tracking the same individuals. The ranking functions Rx are
also stepwise, non-invertible functions, so that the ASN methodology cannot be ap-
plied, in principle, if the reference variables are chosen from the deprivation scores
by dimension.

To solve this, we follow Azevedo et al. (2012b) and use a continuous variable to
build the rank functions R. This amounts to replacing x̂d with a continuous reference
variable in equation (21). The counterfactual for an individual with a x2

d value is an
individual who has the same rank on the continuous variable corresponding to x2

d in
period 1. This hinges on assuming rank preservation to track individuals with the
same rank across two periods.

In practice, any continuous reference variable could substitute x̂d if rank preser-
vation is plausible and its ranking function is invertible. Following Azevedo et al.
(2012b), we start by assuming rank preservation on income and thus use household
income per capita as a reference variable. We call this the “Income” method. We
also use expenditure to include households that underreport income, and call this
the “Expenditure” method.

In some cases it may not be plausible for rank preservation to hold uncondition-
ally, but it may hold conditional on a set of demographic variables z. In this instance,
it is necessary to stratify the data, computing income ranks within strata previously
defined by the demographic variables before applying equation (21). As noted, if it
is assumed that rank preservation holds only after stratification, then the rank func-
tion of income needs to be invertible within strata. Narrowly defined strata may not
satisfy this assumption, so we define strata broadly enough to have enough income
variation within strata. We stratify on several demographics including education,
income deciles, gender and education of the household head. Details are in table
A.2. Some strata may be empty in one of the datasets. By definition, these strata
do not satisfy rank preservation, so they are excluded from all calculations. We call
the methods based on stratification the “Income Strata” and “Expenditure Strata”
methods.

To test if using these reference variables is useful to decompose changes in mul-
tidimensional headcount ratios, we carry out a simulation exercise. We treat the
ELCA panel dataset as a repeated cross sectional dataset. We then calculated the
decomposition using different reference variables. We analyze the performance of
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these choices by comparing the results of the decomposition to those that would
have been obtained using the panel dataset.

Table 7 shows the results of this exercise. We measure the discrepancy as the
average difference in the shares of the change in the headcount attributed to each
category between each method and the panel method. The method based on income
and stratification outperforms the other methods using this measure. Using this
method, the values of the contributions attributed to each category are closer to those
obtained by tracking individuals over time than using any of the other methods.

6.2 Rescaling of datasets

A second problem associated with repeated cross-section data refers to unequal sizes
in the available data across time. This issue is pervasive in applied work, since
survey samples typically become larger over time. To address this, Azevedo et
al. (2012b) suggest rescaling the ranking in the larger dataset to match the smaller
dataset, which necessarily generates observations with the same ranking. Then, each
observation in the smaller dataset is matched with a randomly selected observation
with the same ranking in the rescaled larger dataset.

We test how this method performs in environments when the sample size is re-
duced. We do so by repeating the exercises of table 7, reducing the sample size
in 2013, by taking a random sample of this data and recalculating the decomposi-
tion. The results of this exercise are presented in Table 8. We show the difference in
the shares of the change in headcount attributed to each category comparing each
method to the panel method in the full sample. The “Income Strata” method also
outperforms others in this environment of variable sample sizes. As it is only natu-
ral, the method performs worse when the sample in the first period is smaller com-
pared to the second period.

Having examined the potential issues with the methodology, we have found a
method that best addresses them, outperforming the other ones. We now apply
our preferred “Income Strata” method to the multidimensional poverty decline in
Colombia using the ECV dataset.
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6.3 Results in repeated cross sectional data

We present the results of applying our preferred “Income Strata” method to the
case of the multidimensional poverty decline in Colombia in Table 9. These results
present several highlights that would be absent in a more standard analysis focusing
solely on the evolution of censored or uncensored headcounts.

The largest contributors to the decrease in the Colombian multidimensional head-
count ratio are the ‘education’ and ‘health’ categories. Together, they account for ap-
proximately five percentage points out of a 7.5 percent reduction between 2008 and
2012; that is, more than 60 percent of the decline. Their contribution is similar be-
tween the 2008-2010 period and the 2010-2012 one. The next contributor, ‘childhood
and youth’, is responsible for about one percentage point of the decline. The ‘labor’
category does not contribute much: this result could be expected from the analysis
of the censored and uncensored headcounts, which do not present large reductions
in Tables 3 and A.1. It is also intuitive that labor does not contribute much, given
the sample period analyzed, as Colombia experienced an economic slowdown due
to the global financial crisis over these years. Nevertheless, from those same tables,
it would not have been intuitive to conclude that education was a large driver, in-
stead, more weight would have been attributed (erroneously) to standard of living.
The childhood and youth category is the only one responsible for a larger reduction
of poverty in 2010-2012 than over the previous two years.

The differences across datasets between the contributions of each category to the
decrease after 2010 are worth noting. The decomposition in the ELCA dataset shows
improvements in standard of living as a large driver of the decline, while in ECV this
accounts to at most 15% of the 2010-2012 decline. Another striking difference is the
role of the health dimensions. The decomposition in ELCA attributes increases in
poverty to worsening in health dimensions, while the decomposition in ECV points
towards health as a large contributor to the decline in the headcount ratio. We at-
tribute this to differences between the rural households in ELCA and the average
household in ECV.

7 Conclusions

This paper analyzes the problem of decomposing changes in the multidimensional
headcount ratio into the contributions from dimensions, or categories of dimensions.
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We examine the potential use of decompositions based on counterfactual simulations
to break up changes in the multidimensional headcount; outlining potential issues
with the methodology.

We propose and examine different options to address the caveats of the method-
ology, identifying a method to address these issues that performs well in simulations.
The paper presents the application of this method to decompose the recent decline of
poverty in Colombia, finding that health and education are the largest contributors
to the decline.

Our proposed decomposition provides a useful way to estimate the extent in
which each category contributes to the change in the headcount even in the ab-
sence of panel data, without tracking which individuals cross the multidimensional
poverty cut-off and which dimensions changed for each of those individuals. This
methodology can be a useful complement to the analysis of multidimensional poverty
that focuses on a wide range of indicators, such as those suggested by Ferreira
and Lugo (2013). The exploration of further tools to decompose multidimensional
poverty measurements based on non-scalar indexes, such as multidimensional dis-
tributions, appears as a fruitful avenue for future research.
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ROCHE, JOSÉ MANUEL (2013). “Monitoring Progress in Child Poverty Reduction:
Methodological Insights and Illustration to the Case Study of Bangladesh”. Social
Indicators Research, 112(2), pp. 363–390.

SHORROCKS, ANTHONY F. (2013). “Decomposition procedures for distributional
analysis: a unified framework based on the Shapley value”. The Journal of Economic
Inequality, 11(1), pp. 99–126.

27



Figures and tables

Table 1: Categories and dimensions of the Colombian multidimensional poverty
index.

Category Dimension Deprived if (ECV) Deprived if (ELCA)

Education
Educational achieve-
ment

Any person older than 15 years has less than
9 years of schooling.

Literacy Any person older than 15 years and illiterate.

Childhood and youth

School attendance Any child 6 to 16
years old does not at-
tend school.

Any child 6 to 9 years
old does not attend
school.

Children behind
grade

Any child 7 to 17
years old is behind
the normal grade for
his age.

Any child 7 to 9 years
old is behind the nor-
mal grade for his age.

Access to child care
services

Any child 0 to 5 years
old doesn’t have ac-
cess to health, nutri-
tion or education.

Not measurable

Child labour Any child 12 to 17
years old works.

Not measurable

Employment

Long term unem-
ployment

Any economically ac-
tive member has been
unemployed for 12
months or more.

Not measurable in
2010

Formal employment Any employed household members is not af-
filiated to a pension fund.

Health

Health insurance Any person older than 5 years does not have
health insurance.

Health services Any person who fell sick or ill in the last 30
days did not look for specialized services.

Standard of living

Water system Urban: Household not connected to public
water system. Rural: Household obtains wa-
ter used for cooking from wells, rainwater,
spring source, water tanks, water carriers or
other sources.

Sewage Urban: Household not connected to public
sewer system. Rural: Household uses a toilet
without a sewer connection, a latrine or sim-
ply does not have a sewage system.

Floors Households has dirt floors
Walls Rural: The household’s exterior walls are

made of vegetable, zinc, cloth, cardboard or
waste materials or if no exterior walls exist.
Urban: Walls made of rural materials or un-
treated wood, boards or planks.

Overcrowding Urban: There are 3 people or more per room.
Rural: More than 3 people per room.

Source: Angulo (2010). Deprivations are measured at the household level: all members of the
household are considered deprived if one of the members is deprived in a dimension.
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Figure 1: Trends in monetary and multidimensional poverty measures
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Table 2: Multidimensional poverty measures, censored headcount ratios by
dimension and average deprivation shares by category. 2008-2013.

Indicator Weight 2008 2010 2010 2012 2013
ECV ECV ELCA ECV ELCA

H : Multidimensional headcount ratio (%) 34.5 30.2 51.7 27.0 47.9
A: Average deprivation share among the poor 0.45 0.43 0.44 0.43 0.44
M0: Adjusted headcount ratio 0.15 0.13 0.23 0.11 0.21
Education .2
Educational Achievement (%) 0.1 96.3 94.3 95.3 94.2 95.6
Literacy (%) 0.1 43.4 45.0 30.6 44.6 30.6
At least 1 component (%) 96.4 94.8 95.3 95.0 95.6
Average deprivation share in category 0.70 0.70 0.63 0.69 0.63

Childhood and youth .2
School Attendance (%) 0.05 20.1 20.2 1.1 18.5 1.1
Children behind grade (%) 0.05 71.3 72.7 19.8 71.7 16.0
Access to child care services (%) 0.05 29.4 28.0 . 21.4 .
Child labour (%) 0.05 17.7 16.5 . 14.6 .
At least 1 component (%) 81.9 82.3 20.1 79.0 16.3
Average deprivation share in category 0.35 0.34 0.10 0.32 0.09

Labour .2
Long term unemployment (%) 0.1 10.1 10.6 . 11.1 .
Formal employment (%) 0.1 99.0 99.3 99.7 99.2 99.8
At least 1 component (%) 99.1 99.4 99.7 99.2 99.8
Average deprivation share in category 0.55 0.55 1.00 0.55 1.00

Health .2
Health insurance (%) 0.1 53.3 47.9 20.0 45.0 11.8
Health services (%) 0.1 23.0 17.0 18.0 19.8 30.0
At least 1 component (%) 63.5 57.5 33.3 55.9 38.2
Average deprivation share in category 0.38 0.32 0.19 0.32 0.21

Standard of living .2
Water system (%) 0.04 30.3 27.5 35.4 30.3 38.5
Sewage (%) 0.04 32.0 29.0 31.9 29.6 27.7
Floors (%) 0.04 23.4 20.6 36.5 19.5 29.2
Walls (%) 0.04 7.8 7.6 6.3 5.8 4.8
Overcrowding (%) 0.04 40.0 36.9 41.1 35.3 34.8
At least 1 component (%) 68.6 64.5 81.0 66.7 77.5
Average deprivation share in category 0.27 0.24 0.30 0.24 0.27

Source: Author’s calculations. Headcounts are censored, i.e. calculated over the poor. See table A.1 for the uncensored headcount levels, calculated over the whole
sample. denotes censored headcount ratios of individuals deprived in at least one dimension within the category. is the average over poor individuals of the number of
deprivations divided by the number of dimensions in the category. Childhood and youth related dimensions are calculated for chidren 6-9 years old in ELCA, and for
children up to 17 years old in ECV. When dimensions are missing in a category, weights are redistributed among the remaining dimensions. See table 3 for the changes

of censored headcounts over time.
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Table 3: Changes of censored headcount ratios over time

Indicator 2008-
2010

2010-
2012

2008-
2012

2010-
2013

ECV ECV ECV ELCA

Education
Educational Achievement (% Change) -2.06 -0.07 -2.13 0.23
Literacy (% Change) 3.86 -1.09 2.73 -0.14

Childhood and youth
School Attendance (% Change) 0.87 -8.67 -7.88 -4.54
Children behind grade (% Change) 1.99 -1.36 0.60 -18.90
Access to child care services (% Change) -4.83 -23.54 -27.23 .
Child labour (% Change) -6.71 -11.53 -17.47 .

Labour
Long term unemployment (% Change) 5.15 4.67 10.07 .
Formal employment (% Change) 0.29 -0.14 0.15 0.12

Health
Health insurance (% Change) -10.14 -6.05 -15.57 -40.92
Health services (% Change) -26.19 16.74 -13.83 66.59

Standard of living
Water system (% Change) -9.27 10.18 -0.03 8.76
Sewage (% Change) -9.51 2.33 -7.40 -13.23
Floors (% Change) -12.07 -5.60 -16.99 -19.96
Walls (% Change) -2.50 -23.83 -25.74 -23.90
Overcrowding (% Change) -7.78 -4.44 -11.88 -15.22

Source: Author’s calculations. Childhood and youth related dimensions are calculated for chidren 6-9 years old in ELCA, and for children up to 17 years old in ECV.

See table 2 for the censored headcount levels.
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Table 4: Multidimensional measures and average deprivation shares by category

Indicator 2008 2010 2010 2012 2013
ECV ECV ELCA ECV ELCA

H : Multidimensional headcount ratio (%) 34.5 30.2 51.7 27.0 47.9
A: Average deprivation share among the poor 0.45 0.43 0.44 0.43 0.44
M0 :Adjusted headcount ratio 0.15 0.13 0.23 0.11 0.21
Education 14.0 13.9 12.6 13.9 12.6
Childhood and youth 6.9 6.9 2.1 6.3 1.7
Labour 10.9 11.0 19.9 11.0 20.0
Health 7.6 6.5 3.8 6.5 4.2
Standard of living 5.3 4.9 6.1 4.8 5.4

Source: Author’s calculations. Average deprivation shares by category are calculated by calculating the average deprivation shares by dimension as in equation 5, then
adding over categories.

Table 5: Rank correlations between deprivation scores across categories. ELCA.

2010
Education Childhood

and youth
Labour Health Standard

of living
Education 1.00 -0.01 -0.04 -0.18 -0.03
Childhood and youth -0.01 1.00 -0.08 -0.03 -0.02
Labour -0.04 -0.08 1.00 -0.05 -0.00
Health -0.18 -0.03 -0.05 1.00 -0.15
Standard of living -0.03 -0.02 -0.00 -0.15 1.00

2013
Education Childhood

and youth
Labour Health Standard

of living
Education 1.00 -0.05 -0.03 -0.20 0.00
Childhood and youth -0.05 1.00 -0.08 -0.02 0.03
Labour -0.03 -0.08 1.00 -0.06 -0.01
Health -0.20 -0.02 -0.06 1.00 -0.25
Standard of living 0.00 0.03 -0.01 -0.25 1.00

Source: Author’s calculations. Numbers are τb rank correlation coefficients between deprivation scores by category.
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Table 6: Decomposition of the change in the multidimensional headcount ratio.
Colombia, ELCA 2010-2013

Category 2010-2013

Education
Change due to category (Percentage points) -0.95
Percentage contribution of category (%) 25.15
Childhood and youth
Change due to category (Percentage points) -0.79
Percentage contribution of category (%) 20.86
Labour
Change due to category (Percentage points) -0.45
Percentage contribution of category (%) 11.89
Health
Change due to category (Percentage points) 0.51
Percentage contribution of category (%) -13.58
Standard of living
Change due to category (Percentage points) -2.10
Percentage contribution of category (%) 55.68
Total -3.77

Source: Author’s calculations. Columns show the share of the change in the multidimensional headcount attributed to each row category.
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Table 7: Results of the decomposition treating panel as repeated cross section.
Colombia: ELCA 2010-2013

Panel Income Income Expenditure Expenditure
Strata Strata

Value Value abs.
diff.

Value abs.
diff.

Value abs.
diff.

Value abs.
diff.

Education -0.95 -1.54 0.59 -0.92 0.02 -1.32 0.37 -0.84 0.11
Childhood and Youth -0.79 -0.86 0.07 -1.08 0.29 -0.86 0.07 -0.97 0.18
Labour -0.45 -0.68 0.23 -0.50 0.05 -0.33 0.12 -0.46 0.01
Health 0.51 0.88 0.37 0.57 0.05 0.49 0.03 0.13 0.38
Standard of living -2.10 -1.57 0.53 -1.83 0.27 -1.75 0.35 -1.64 0.46

Average 0.36 0.14 0.19 0.23
As % of total change 0.09 0.04 0.05 0.06

Source: Author’s calculations. Column “Panel” show the results of the decomposition tracks the same households over time. The remaining columns show the result of
the decomposition using different methods. “Value” columns show the contribution of each category in each method and “abs diff” columns show the deviation from
the contribution of each category in the panel method. Method “Income” uses income per capita by household as the reference variable. Method “Expenditure” uses

expenditure per capita by household as the reference variable. Methods “Income Strata” and “Expenditure Strata” use income and expenditure, respectively, stratifying
first on variables for: urban household, gender of household head, members of household, number of kids, education of the household head and decile of income or

expenditure.
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Table 8: Results of the decomposition treating panel as repeated cross section.
Unequal sample sizes. Colombia: ELCA 2010-2013

Income Income Strata Expenditure Expenditure
Strata

15 % sample reduction

Education 0.13 0.06 0.04 0.02
Childhood and Youth 0.00 0.01 0.03 0.06
Labour 0.02 0.00 0.05 0.02
Health 0.02 0.07 0.07 0.13
Standard of living 0.17 0.03 0.19 0.15

Average 0.07 0.04 0.07 0.08

30 % sample reduction

Education 0.24 0.04 0.25 0.13
Childhood and Youth 0.05 0.10 0.00 0.07
Labour 0.09 0.02 0.01 0.04
Health 0.04 0.08 0.02 0.12
Standard of living 0.16 0.08 0.24 0.29

Average 0.12 0.06 0.11 0.13

Source: Author’s calculations. Values are differences in shares attributed to each category compared to the panel method. The columns show these differences in shares
across different decomposition methods. Method “Income” uses income per capita by household as the reference variable. Method “Expenditure” uses expenditure per
capita by household as the reference variable. Methods “Income Strata” and “Expenditure Strata” use income and expenditure, respectively, stratifying first on variables

for: urban household, gender of household head, members of household, number of kids, education of the household head and decile of income or expenditure.
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Table 9: Decomposition of the change in the multidimensional headcount ratio.
Colombia. ECV 2008-2012

Indicator 2008-
2010

2010-
2012

2008-
2012

Education
Change due to category (Percentage points) -1.124 -1.034 -2.465
Percentage contribution of category (%) 27.51 30.24 32.85
Childhood and youth
Change due to category (Percentage points) -0.484 -0.663 -1.152
Percentage contribution of category (%) 11.85 19.40 15.35
Labour
Change due to category (Percentage points) -0.334 -0.100 -0.405
Percentage contribution of category (%) 8.18 2.93 5.39
Health
Change due to category (Percentage points) -1.418 -1.007 -2.372
Percentage contribution of category (%) 34.72 29.46 31.61
Standard of living
Change due to category (Percentage points) -0.725 -0.614 -1.111
Percentage contribution of category (%) 17.74 17.97 14.80
Total -4.09 -3.42 -7.50

Source: Author’s calculations. Columns show the share of the change in the multidimensional headcount attributed to each row category using the “Income Strata”
method of section 6.1.
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Appendix

Table A.1: Uncensored headcount rations by dimension.

Indicator 2008 2010 2010 2012 2013
ECV ECV ELCA ECV ELCA

Education
Educational Achievement(%) 62.7 58.7 71.8 56.2 67.5
Literacy(%) 17.4 16.0 16.3 14.2 15.0

Childhood and youth
School Attendance(%) 8.0 7.1 0.7 6.2 0.5
Children behind grade(%) 45.1 47.0 11.4 44.6 8.9
Access to child care services(%) 17.1 16.3 . 12.9 .
Child labour(%) 7.8 6.6 . 5.4 .

Labour
Long term unemployment(%) 6.7 6.8 . 6.6 .
Formal employment(%) 83.7 83.6 81.1 82.9 81.9

Health
Health insurance(%) 27.7 24.3 12.1 21.1 7.1
Health services(%) 10.8 7.8 11.0 7.9 17.6

Standard of living
Water system(%) 14.6 12.6 20.1 13.2 20.8
Sewage(%) 15.7 13.0 17.9 13.5 14.8
Floors(%) 9.2 7.5 19.7 6.8 14.6
Walls(%) 3.4 3.1 3.5 2.4 2.6
Overcrowding(%) 22.2 19.2 25.2 18.4 20.4

Source: Author’s calculations. Headcounts are uncensored, i.e. calculated over the whole sample. See table 2 for the censored headcount levels, calculated among the
poor.
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Table A.2: Demographic variables used for stratification

Variable Description

Decile Income Decile
Household head gender 1 if the household head is male, 0 otherwise
Education 1 if the household head has no education, 2 if he has

primary, 3 secondary and 4 tertiary.
Household size 1 if household has more than 4 people, 0 otherwise.
Kids 1 if household has kids, 0 otherwise.
Urban 1 if household is located in a urban area, 0 otherwise
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